

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fourth Semester)

Branch - INFORMATION TECHNOLOGY

STATISTICS FOR INFORMATION TECHNOLOGY - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	The errors in a survey other than sampling errors are called a) formula error b) planning error c) non-sampling error d) none of the above	K1	CO1
	2	A function of variate for estimating a parameter is called a) an estimate b) an estimator c) a frame d) a statistic	K2	CO1
2	3	Test of hypothesis $H_0: \mu = 70$ vs. $H_1: \mu > 70$ leads to a) one sided left tailed test b) two sided right tailed test c) two sided test d) none of the above	K1	CO2
	4	A hypothesis may be classified as a) simple b) composite c) null d) all of the above	K2	CO2
3	5	Student's t - test was invented by a) R.A.Fisher b) G.W.Snedecor c) W.S. Gosset d) W.G.Cochran	K1	CO2
	6	The degrees of freedom for t - statistic for paired t test based on n pairs of observations is a) $2(n - 1)$ b) $(n - 1)$ c) $2n - 1$ d) $n_1 + n_2 - 2$	K2	CO2
4	7	The ratio of between sample variance and within sample variance follows a) F - distribution b) Z - distribution c) t - distribution d) chi - square distribution	K1	CO3
	8	Degrees of freedom for chi-square in case of contingency table of order (4X3) are a) 12 b) 9 c) 8 d) 6	K2	CO3
5	9	Kruskal-Wallis analysis of data is meant for a) one - way classification b) two - way classification c) non - classified data d) none of the above	K1	CO3
	10	What is the primary application of the sign test? a) To compare means of two independent groups b) To compare variances of two independent groups c) To determine if a sample median differs from a known value d) To test the equality of proportions in two independent groups	K2	CO3

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the selection of simple random sampling with and without replacement. (OR)	K2	CO1
	11.b.	Explain the sampling and non - sampling errors.		

Cont...

2	12.a.	Explain the general procedure of testing of hypothesis. (OR)	K3	CO2																																		
	12.b.	The means of two large samples of 1000 and 2000 items are 67.5 cms and 68 cms respectively. Can the samples be regarded as drawn from the population with standard deviation 2.5 cms? Test at 5% level of significance.																																				
3	13.a.	Two types of batteries are tested for their length of life and the following data are obtained: <table border="1"><thead><tr><th></th><th>No. of samples</th><th>Mean Life (in hours)</th><th>Variance</th></tr></thead><tbody><tr><td>Type A</td><td>9</td><td>600</td><td>121</td></tr><tr><td>Type B</td><td>8</td><td>640</td><td>144</td></tr></tbody></table> Is there a significant difference in the two means? ($t_{9+8-2} = 15$ df @ 0.05 = 2.131)		No. of samples	Mean Life (in hours)	Variance	Type A	9	600	121	Type B	8	640	144	K4	CO2																						
	No. of samples	Mean Life (in hours)	Variance																																			
Type A	9	600	121																																			
Type B	8	640	144																																			
(OR)																																						
13.b.	Explain the testing procedure of paired t test.																																					
4	14.a.	Explain the testing procedure of Analysis of Variance (ANOVA). (OR)	K3	CO3																																		
	14.b.	Explain the concept and properties of chi – square distribution.																																				
5	15.a.	Test the following two samples came from the same population. Use sign test. <table border="1"><tr><td>A</td><td>7</td><td>8</td><td>5</td><td>2</td><td>9</td><td>5</td><td>10</td><td>12</td><td>14</td><td>16</td><td>18</td><td>20</td><td>30</td><td>15</td><td>7</td><td>8</td></tr><tr><td>B</td><td>2</td><td>7</td><td>8</td><td>10</td><td>15</td><td>20</td><td>12</td><td>8</td><td>7</td><td>10</td><td>8</td><td>10</td><td>20</td><td>10</td><td>8</td><td>9</td></tr></table> (OR)	A	7	8	5	2	9	5	10	12	14	16	18	20	30	15	7	8	B	2	7	8	10	15	20	12	8	7	10	8	10	20	10	8	9	K4	CO3
A	7	8	5	2	9	5	10	12	14	16	18	20	30	15	7	8																						
B	2	7	8	10	15	20	12	8	7	10	8	10	20	10	8	9																						
15.b. Explain the testing procedure of Kruskal Wallis test.																																						

SECTION –C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO																										
1	16	Explain the methods of non - probability sampling with suitable examples.	K4	CO1																										
2	17	Explain the testing procedure of equality of two proportions for large sample test.	K4	CO2																										
3	18	Two random samples drawn from two normal populations are: <table border="1"><tr><td>X</td><td>20</td><td>16</td><td>26</td><td>27</td><td>22</td><td>23</td><td>18</td><td>24</td><td>19</td><td>25</td><td></td><td></td></tr><tr><td>Y</td><td>27</td><td>33</td><td>42</td><td>35</td><td>32</td><td>34</td><td>38</td><td>28</td><td>41</td><td>43</td><td>30</td><td>37</td></tr></table> Obtain the estimates of the variance of the population and test 5% level of significance whether the two populations have the same variance. ($F_{(11, 9) \text{ df}} @ 5\% = 3.10$).	X	20	16	26	27	22	23	18	24	19	25			Y	27	33	42	35	32	34	38	28	41	43	30	37	K4	CO2
X	20	16	26	27	22	23	18	24	19	25																				
Y	27	33	42	35	32	34	38	28	41	43	30	37																		
4	19	The following table gives the number of good and bad parts produced by each of three shifts in a factory. <table border="1"><thead><tr><th>Shifts</th><th>Good</th><th>Bad</th><th>Total</th></tr></thead><tbody><tr><td>Day</td><td>900</td><td>130</td><td>1030</td></tr><tr><td>Evening</td><td>700</td><td>170</td><td>870</td></tr><tr><td>Night</td><td>400</td><td>200</td><td>600</td></tr><tr><td>Total</td><td>2000</td><td>500</td><td>2500</td></tr></tbody></table> Is there any association between the shift and the equality of parts produced? ($\chi^2_{0.05, 2 \text{ df}} = 5.991$).	Shifts	Good	Bad	Total	Day	900	130	1030	Evening	700	170	870	Night	400	200	600	Total	2000	500	2500	K4	CO3						
Shifts	Good	Bad	Total																											
Day	900	130	1030																											
Evening	700	170	870																											
Night	400	200	600																											
Total	2000	500	2500																											
5	20	Explain the testing procedure of Run test.	K4	CO3																										