

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch - ELECTRONICS

MATHEMATICS - II FOR ELECTRONICS

Maximum: 75 Marks

Time: Three Hours

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 \times 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	A function $f(x)$ is periodic with period _____ a) 2π b) 3π c) 4π d) 5π	K1	CO1
	2	The exponential form of Fourier series involves terms of the type _____ a) e^{inx} b) e^{nx} c) $\sin nx$ d) $\cos nx$	K2	CO1
2	3	A partial differential equation is formed by _____ a) Differentiating an equation containing arbitrary constants b) Differentiating an equation containing arbitrary functions c) Eliminating arbitrary constants (or) arbitrary functions d) Integrating an ordinary differential equation	K1	CO2
	4	The general solution of the partial differential equation $\frac{\partial z}{\partial x} = 0$ is _____ a) $z = f(x)$ b) $z = f(y)$ c) $z = c$ d) $z = x+y$	K2	CO2
3	5	Which of the following is a sufficient condition for the existence of Laplace transform of $f(t)$? a) $f(t)$ is piecewise continuous on every finite interval and of exponential order b) $f(t)$ is periodic with any period c) $f(t)$ is continuous everywhere d) $f(t)$ is bounded everywhere	K1	CO3
	6	If $L\{f(t)\} = F(s)$, then $L\{e^{5t}f(t)\}$ is _____ a) $F(s+5)$ b) $F(s-5)$ c) $e^5 F(s)$ d) $e^5 F(s+5)$	K2	CO3
4	7	If f and g are any two scalar point functions, then $\nabla(f+g) =$ _____ a) $\nabla f + \nabla g$ b) $\nabla f - \nabla g$ c) $\nabla f \cdot \nabla g$ d) $\nabla f / \nabla g$	K1	CO4
	8	If $\text{Curl } \vec{F} = 0$, then \vec{F} is said to be _____ a) Rotational b) Irrotational c) Solenoidal d) Harmonic	K2	CO4
5	9	The line integral of a conservative vector field along a closed path is _____ a) Maximum b) Minimum c) Zero d) Infinite	K1	CO5
	10	The divergence theorem relates _____ a) Line integral and Surface integral b) Surface integral and Volume integral c) Two line integrals d) Double integral	K2	CO5

Cont...

SECTION - B (35 Marks)Answer ALL questions
ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Expand $f(x) = (\pi - x)^2$ in $(-\pi, \pi)$ as a Fourier series. (OR)	K3	CO1
	11.b.	Determine the half range sine series of $f(x) = x^2$ in $(0, \pi)$		
2	12.a.	Establish the partial differential equation of all planes having equal intercepts on the x and y axis. (OR)	K4	CO2
	12.b.	Eliminate ϕ_1 and ϕ_2 from $z = \phi_1(x) \cdot \phi_2(y)$.		
3	13.a.	Classify $L(e^{2t} + 3e^{-5t})$. (OR)	K2	CO3
	13.b.	Identify $L^{-1}\left[\frac{1}{(s+1)^2+1}\right]$.		
4	14.a.	If $\phi = x^2 + y - z - 1$, evaluate $\text{grad } \phi$ at $(1, 0, 0)$. (OR)	K3	CO4
	14.b.	Prove that $\text{curl}(\text{grad } \phi) = 0$.		
5	15.a.	Analyze $\iint_S \text{curl } \vec{F} \cdot \hat{n} ds = 0$, where S is any closed surface by using Gauss's divergence theorem. (OR)	K4	CO5
	15.b.	Show that $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ is a conservative vector field.		

SECTION - C (30 Marks)Answer ANY THREE questions
ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Appraise the Fourier series of $f(x) = e^{ax}$ in $(0, 2\pi)$	K5	CO1
2	17	Examine the PDE $z = p^2 + q^2$	K4	CO2
3	18	Analyze $L^{-1}\left[\frac{(s)^2}{(s-1)^4}\right]$	K4	CO3
4	19	Show that $\vec{F} = yz \vec{i} + zx \vec{j} + xy \vec{k}$ is irrotational	K4	CO4
5	20	Verify Green's theorem in a plane for the integral $\int_C \{(x-2y)dx + xdy\}$, taken around the circle $x^2 + y^2 = 1$	K5	CO5