

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - COMPUTER SCIENCE WITH DATA ANALYTICS
MATHEMATICAL FOUNDATION FOR DATA SCIENCE

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	A function f is _____ if $\lim_{x \rightarrow a^-} f(x) = f(a)$ a) continuous from the left at a b) continuous at a . c) continuous d) continuous from the right at a .	K1	CO1
	2	If $f(x) = e^x - x$, then $f''(x)$ is _____. a) $e^x - x$ b) $e^x - 1$ c) e d) e^x	K2	CO1
2	3	The value of $\int_0^1 (4 + 3x^2) dx$ is a) 4 b) -1 c) 5 d) 1	K1	CO2
	4	$\int_1^2 \frac{1}{x^p} dx$ is convergent if a) $p \leq 1$ b) $p > 1$ c) $x \leq 1$ d) $x > 1$	K2	CO2
3	5	Which iterative method updates values as soon as they are computed? a) Jacobi Method b) Gauss-Seidel Method c) Gauss-Jordan Method d) Gauss Elimination	K1	CO3
	6	Gauss Elimination is used to a) Convert the matrix into diagonal form b) Reduce the system to upper triangular form and use back substitution c) Convert the matrix into identity matrix d) Solve only nonlinear equations	K2	CO3
4	7	The forward difference operator is denoted by a) Δ b) ∇ c) δ d) D	K1	CO4
	8	Gregory-Newton forward interpolation formula is used when a) Data points are unevenly spaced b) Interpolation is performed near the beginning of the table c) Interpolation is performed near the end of the table d) Function values are unknown	K2	CO4
5	9	Newton's backward differentiation formula is preferred when a) Interpolating at the middle of the table b) Interpolating near the last data point c) All differences are zero d) Data is not equidistant.	K1	CO5
	10	The Trapezoidal rule integrates by approximating the function with a) A parabola b) A straight line c) Higher-order polynomials d) A cubic spline	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO																				
1	11.a.	Differentiate the function, $f(t) = \sqrt{t}(a+bt)$. (OR)	K2	CO1																				
	11.b.	Differentiate, $y = (2x+1)^5(x^3 - x + 1)^4$.																						
2	12.a.	Find $\int \sqrt{1+x^2} x^5 dx$. (OR)	K2	CO2																				
	12.b.	Evaluate $\int_0^3 \frac{dx}{x-1}$, if possible.																						
3	13.a.	Solve by Gauss-Jordan method : $2x+y+4z=12$ $8x-3y+2z=20$ $4x+11y-z=33$. (OR)	K3	CO3																				
	13.b.	Solve by Gauss-Elimination method to the following equations $3x - y + 2z = 12$ $x + 2y + 3z = 11$ $2x - 2y - z = 2$.																						
4	14.a.	Using Newton's Formula, find y when x=27, from the following data <table style="margin-left: 100px;"><tr><td>x :</td><td>10</td><td>15</td><td>20</td><td>25</td><td>30</td></tr><tr><td>y :</td><td>35.4</td><td>32.2</td><td>29.1</td><td>26.0</td><td>23.1</td></tr></table> (OR)	x :	10	15	20	25	30	y :	35.4	32.2	29.1	26.0	23.1	K3	CO4								
x :	10	15	20	25	30																			
y :	35.4	32.2	29.1	26.0	23.1																			
14.b.	Construct Newton's forward interpolation polynomial for the following data: <table style="margin-left: 100px;"><tr><td>x :</td><td>4</td><td>6</td><td>8</td><td>10</td></tr><tr><td>y :</td><td>1</td><td>3</td><td>8</td><td>16</td></tr></table>	x :	4	6	8	10	y :	1	3	8	16													
x :	4	6	8	10																				
y :	1	3	8	16																				
5	15.a.	Find $\frac{dy}{dx}$ at x=1.25 from the table <table style="margin-left: 100px;"><tr><td>x :</td><td>1.00</td><td>1.05</td><td>1.10</td><td>1.15</td></tr><tr><td>y :</td><td>1.00000</td><td>1.02470</td><td>1.04881</td><td>1.07238</td></tr><tr><td></td><td>1.20</td><td>1.25</td><td>1.30</td><td></td></tr><tr><td></td><td>1.09544</td><td>1.11803</td><td>1.14017</td><td></td></tr></table> (OR)	x :	1.00	1.05	1.10	1.15	y :	1.00000	1.02470	1.04881	1.07238		1.20	1.25	1.30			1.09544	1.11803	1.14017		K3	CO5
x :	1.00	1.05	1.10	1.15																				
y :	1.00000	1.02470	1.04881	1.07238																				
	1.20	1.25	1.30																					
	1.09544	1.11803	1.14017																					
15.b.	Using the trapezoidal rule, evaluate $\int_{0.6}^2 y dx$ from the following table <table style="margin-left: 100px;"><tr><td>x :</td><td>0.6</td><td>0.8</td><td>1.0</td><td>1.2</td></tr><tr><td>y :</td><td>1.23</td><td>1.58</td><td>2.03</td><td>4.32</td></tr><tr><td></td><td>1.4</td><td>1.6</td><td>1.8</td><td>2.0</td></tr><tr><td></td><td>6.25</td><td>8.36</td><td>10.23</td><td>12.45</td></tr></table>	x :	0.6	0.8	1.0	1.2	y :	1.23	1.58	2.03	4.32		1.4	1.6	1.8	2.0		6.25	8.36	10.23	12.45			
x :	0.6	0.8	1.0	1.2																				
y :	1.23	1.58	2.03	4.32																				
	1.4	1.6	1.8	2.0																				
	6.25	8.36	10.23	12.45																				

Cont...

SECTION-C (30 Marks)


Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Find the absolute maximum and minimum values of the function, $f(x) = x^3 - 3x^2 + 1, \quad -\frac{1}{2} \leq x \leq 4$	K3	CO1
2	17	Find $\int \frac{dx}{x^2 - a^2}$, where $a \neq 0$.	K2	CO2
3	18	Solve the following equation by Gauss- Seidel iteration method, $\begin{aligned} 28x + 4y - z &= 32 \\ x + 3y + 10z &= 24 \\ 2x + 17y + 4z &= 35 \end{aligned}$	K2	CO3
4	19	In the table below, Estimate the missing value : x : 0 1 2 3 4 y : 1 2 4 - 16 Also explain why it differs from $2^3 = 8$.	K3	CO4
5	20	Dividing the range into 10 equal parts, find the approximate value of $\int_0^{\pi} \sin x \, dx$ by Simpson's rule.	K3	CO5

Z-Z-Z

END

