

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch - COMPUTER SCIENCE WITH DATA ANALYTICS

LINEAR ALGEBRA

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks - 1 (10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	A square matrix A is invertible if and only if _____. a) $\det(A) \neq 0$ b) $\det(A) = 0$ c) A is symmetric d) A is diagonal	K1	CO1
	2	In LU factorization, a matrix A is expressed as _____. a) $A = L + U$ b) $A = UL$ c) $A = LU$ d) $A = L^{-1}sU$	K2	CO1
2	3	Two vectors u and v are orthogonal if _____. a) $u \cdot v = 1$ b) $u \cdot v = 0$ c) $u + v = 0$ d) $u - v = 0$	K1	CO2
	4	The Gram-Schmidt process is used to _____. a) Find eigenvalues b) Compute determinants c) Solve linear systems d) Construct an orthogonal (or orthonormal) basis	K2	CO2
3		The determinant of a matrix is zero if and only if _____. a) The matrix is invertible b) The matrix is diagonal c) The matrix is singular d) The matrix is symmetric		
	5	The characteristic equation of A is obtained from _____. a) $\det(A + \lambda I) = 0$ b) $A^T A = \lambda I$ c) $\det(A) = 0$ d) $\det(A - \lambda I) = 0$	K1	CO3
4	7	If T is a linear transformation and v is an eigenvector, then _____. a) $T(v) = 0$ b) $T(v) = v^T$ c) $T(v) = \lambda v$ d) $T(v) = \lambda^2 v$	K1	CO4
	8	If A is diagonalizable, then it can be written as _____. a) $A = PDP^{-1}$ b) $A = P + D + P^{-1}$ c) $A = PDPT^T$ d) $A = P^TDP$	K2	CO4
5	9	Singular value Decomposition of a matrix A expresses it as _____. a) $A = U\Sigma V^T$ b) $A = PDP^{-1}$ c) $A = QR$ d) $A = LL^T$	K1	CO5
	10	The matrix of a linear transformation depends on _____. a) Only the dimension of the vector space b) The choice of basis for domain and codomain c) Only the determinant d) Only the eigenvalues	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Prove that the dot product $v \cdot w$ is zero when v is perpendicular to w .	K2	CO1
		(OR)		

Cont...

	11.b.	Multiply these matrices in the orders EF and FE : $E = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{bmatrix}$ $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix}$	K2	CO1
2	12.a.	Find the LU factorization of A and the complete solution to $Ax = b$: $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 5 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 3 \\ 6 \\ 5 \end{bmatrix}$ and then $b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.	K2	CO2
		(OR)		
	12.b.	If v_1, \dots, v_m and w_1, \dots, w_n are both bases for the same vector space, then prove that $m = n$.		
3	13.a.	Prove that $A^T A$ is invertible if and only if the columns of A are linearly independent.	K3	CO3
		(OR)		
	13.b.	Explain the orthogonal matrix with three examples.		
4	14.a.	Compute the determinants of A and B from six terms. Are their columns independent? $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 4 & 4 \\ 5 & 6 & 7 \end{bmatrix}$	K3	CO4
		(OR)		
	14.b.	Find the axes of the tilted ellipse $5x^2 + 8xy + 5y^2 = 1$.		
5	15.a.	Find the SVD of the singular matrix $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$.	K3	CO5
	15.b.	T reflects every vector v across the straight line at angle θ . The output $T(v)$ is the mirror image of v on the other side of the line. Find the matrix A in the standard basis and the matrix Λ in the eigenvector basis.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Find A^{-1} (if it exists) by Gauss Jordan elimination on $[A \ I]$: $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$	K3	CO1
2	17	Explain the four subspaces for U with examples.	K4	CO2
3	18	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ find \tilde{x} and p and P .	K3	CO3
4	19	Use Cramer's Rule (it needs four determinants) to solve $x_1 + x_2 + x_3 = 1$, $-2x_1 + x_2 = 0$, $-4x_1 + x_3 = 0$.	K4	CO4
5	20	Find the singular value decomposition of $A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$.	K3	CO5