

**PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)**

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch - COMPUTER SCIENCE

DATA STRUCTURES AND ALGORITHMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Module No.	Question No.	Question	K Level	CO
1	1	Which sorting algorithm has the best average-case complexity? a) Bubble Sort b) Quick Sort c) Selection Sort d) Insertion Sort	K1	CO1
	2	The space complexity of an algorithm refers to _____. a) Temporary variables used b) Input size c) Output size d) Execution time	K2	CO1
2	3	Which linked list allows traversal in both directions? a) Single Linked List b) Doubly Linked List c) Circular Linked List d) Array List	K1	CO2
	4	The postfix expression of $(A+B)^*C$ is _____. a) $A B + C ^ *$ b) $A B C ^ * +$ c) $A + B ^ * C$ d) $A ^ * B + C$	K2	CO2
3	5	Which queue allows insertion and deletion at both ends? a) Circular queue b) Deque c) Priority queue d) Simple queue	K1	CO3
	6	Which queue gives highest priority to elements? a) Simple queue b) Circular queue c) Priority queue d) Deque	K2	CO3
4	7	Which algorithm is used to solve the shortest path problem? a) Kruskal's algorithm b) Dijkstra's algorithm c) Prim's algorithm d) Floyd's algorithm	K1	CO4
	8	Which algorithm is used in All-Pairs shortest path? a) Floyd-Warshall b) Dijkstra c) Bellman-Ford d) Kruskal	K2	CO4
5	9	Huffman coding is used in _____. a) Encryption b) Compression c) Searching d) Sorting	K1	CO5
	10	The Hamiltonian circuit problem is solved using _____. a) Backtracking b) Greedy c) Dynamic programming d) BFS	K2	CO5

SECTION - B (35 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** Marks

$$(5 \times 7 = 35)$$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Identify the basic concept of sparse matrices with example.	K2	CO1
		(OR)		
	11.b.	Distinguish between the time and space complexity.		

Cont...

2	12.a.	Explain the difference between binary search and sequential search.	K2	CO2		
	(OR)					
3	12.b.	Illustrate the various operations on stack with example.	K4	CO3		
	13.a.	Summarize the procedure for circular queue.				
4	13.b.	Evaluate the concept of AVL search trees with example.	K3	CO4		
	14.a.	Discuss the need of asymptotic notations with example.				
5	14.b.	Assume the purpose of Warshall's algorithm in dynamic programming.	K5	CO5		
	15.a.	Determine the use of Kruskal's algorithm in greedy method.				
(OR)						
5	15.b.	Estimate the algorithm for N-Queens problem in backtracking.				

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Analyze the algorithm for quick sort with example.	K2	CO1
2	17	Enumerate the procedure for insertion and deletion operations on doubly linked list.	K2	CO2
3	18	Evaluate the insertion and deletion of nodes in binary search tree.	K6	CO3
4	19	Discover the implementation of travelling salesman problem.	K3	CO4
5	20	Elaborate the Hamiltonian circuit problem in backtracking.	K5	CO5

Z-Z-Z

END