

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fourth Semester)

Branch - COMPUTER SCIENCE

SOFTWARE ENGINEERING & TESTING

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$$(10 \times 1 = 10)$$

Cont...

5	10	List the components that should be included in a well-written test case. a) Test ID, Test Steps, Expected Result, Actual Result b) Only the expected result c) Only the test steps d) Only the test ID and test steps	K2	CO5
---	----	---	----	-----

SECTION - B (35 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks (5 x 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Outline the concept of software architecture and its significance in the software development lifecycle. Analyze the key characteristics of a well-designed architecture, such as modularity, maintainability, and scalability.	K2	CO1
		(OR)		
2	12.a.	Describe the concepts of cohesion and coupling in software design. Examine how these concepts relate to the principles of modularity and their impact on the maintainability, reusability, and testability of software	K3	CO2
		(OR)		
3	12.b.	Evaluate the concept of LOC-based estimation in software project management. Discuss the advantages and limitations of this technique.	K3	CO3
	13.a.	Compare the Waterfall model and the Agile development model. Analyze the suitability of each model for different types of software projects.		
4		(OR)	K4	CO4
	14.a.	Critique the different strategies for integrating software modules, such as top-down integration, bottom-up integration, and big bang integration. Analyze the advantages and disadvantages of each strategy.		
5		(OR)	K4	CO5
	14.b.	Justify different types of performance testing, and their objectives. Assess how performance testing results contribute to identifying and resolving performance bottlenecks, ensuring the system meets the specified non-functional requirements.		
5	15.a.	Evaluate the key elements of an effective test case specification, including test case ID, test data, expected results, and preconditions.	K4	CO5
		(OR)		
5	15.b.	Synthesize the importance of selecting appropriate test automation tools and integrating them effectively with the development and testing processes. Analyze how the right tools can enhance the efficiency and effectiveness of the testing lifecycle.		

Cont...

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Justify the core principles of Agile development and assess how they are reflected in practices such as iterative development, daily stand-up meetings, and continuous integration.	K4	CO1
2	17	Evaluate the critical role of risk management in successful software project management. Analyze various types of risks that can impact a software project.	K4	CO2
3	18	Critique the Capability Maturity Model Integration (CMMI) framework as a model for software process improvement. Analyze the different process areas defined by CMMI and how they contribute to organizational maturity.	K4	CO3
4	19	Assess the critical role of performance testing in ensuring the scalability and reliability of a software system, particularly in today's cloud-based and distributed environments. Analyze how different performance testing methodologies evaluate the system's behavior under various conditions.	K5	CO4
5	20	Formulate the concept of "shift-left testing" and its relevance in modern software development. Analyze how testing activities can be integrated throughout the software development lifecycle, starting from the requirements gathering phase.	K5	CO5

Z-Z-Z END

