

PSG COLLEGE OF ARTS & SCIENCE  
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025  
(First Semester)

Branch - CHEMISTRY

GENERAL CHEMISTRY - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10  $\times$  1 = 10)

| Module No. | Question No. | Question                                                                                                                                                                   | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | Heisenberg's uncertainty principle relates:<br>(a) Mass & energy<br>(b) Position & momentum<br>(c) Charge & spin<br>(d) Frequency & velocity                               | K1      | CO1 |
|            | 2            | Mulliken's scale of electronegativity uses _____<br>(a) Ionization energy + electron affinity<br>(b) Bond energy<br>(c) Atomic radius<br>(d) Shielding effect              | K2      | CO1 |
| 2          | 3            | Shape of $\text{PCl}_5$ molecule according to VSEPR theory is:<br>(a) Square planar (b) Trigonal planar<br>(c) Trigonal bipyramidal (d) Octahedral                         | K1      | CO2 |
|            | 4            | The strongest hydrogen bonding occurs in:<br>(a) HF (b) $\text{H}_2\text{O}$ (c) $\text{NH}_3$ (d) $\text{CH}_4$                                                           | K2      | CO2 |
| 3          | 5            | A covalent bond is formed due to:<br>(a) Transfer of electrons<br>(b) Complete loss of electrons<br>(c) Sharing of electrons<br>(d) Attraction between nucleus and nucleus | K1      | CO3 |
|            | 6            | Which of the following molecules does not exist according to MO theory?<br>(a) $\text{H}_2$ (b) $\text{He}_2$ (c) $\text{Li}_2$ (d) $\text{N}_2$                           | K2      | CO3 |
| 4          | 7            | Boyle's law can be derived from kinetic theory by assuming:<br>(a) Constant temperature<br>(b) Constant pressure<br>(c) Constant volume<br>(d) Constant molecular mass     | K1      | CO4 |
|            | 8            | Viscosity of a gas _____ with increase in temperature.<br>(a) Decreases<br>(b) Remains constant<br>(c) Increases<br>(d) First increases then decreases                     | K2      | CO4 |
| 5          | 9            | Delocalization of $\pi$ -electrons leading to stability is called:<br>(a) Resonance (b) Hyperconjugation<br>(c) Electromeric effect (d) Steric hindrance                   | K1      | CO5 |
|            | 10           | Which of the following is an electrophile?<br>(a) $\text{OH}^-$ (b) $\text{NH}_3$ (c) $\text{BF}_3$ (d) $\text{CN}^-$                                                      | K2      | CO5 |

Cont...

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

| Module No. | Question No. | Question                                                                                                                   | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Derive De Broglie equation.<br><br>(OR)                                                                                    | K1      | CO1 |
|            | 11.b.        | State and explain Hund's rule and Pauli's exclusion principle.                                                             |         |     |
|            | 12.a.        | Describe Fajan's rules. Explain with examples the factors that increase covalent character in ionic compounds.<br><br>(OR) |         | CO2 |
| 2          | 12.b.        | Define hydrogen bonding. Differentiate intermolecular and intramolecular hydrogen bonding with examples.                   | K1      |     |
|            | 13.a.        | Write the postulates of VB theory. Explain the theory by taking one example.<br><br>(OR)                                   | CO3     |     |
|            | 13.b.        | Prove that according to MOT bond order of CO molecule is 3.                                                                |         |     |
| 4          | 14.a.        | Derive Boyle's and Charles's law and compare the laws.<br><br>(OR)                                                         | K4      | CO4 |
|            | 14.b.        | Explain the postulates of Kinetic Theory of Gases.                                                                         |         |     |
|            | 15.a.        | Analyze the formation, structure and stability of carbocation.<br><br>(OR)                                                 |         | CO5 |
| 5          | 15.b.        | Compare inductive effect and electromeric effect.                                                                          | K4      |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 × 10 = 30)

| Module No. | Question No. | Question                                                                                                                                                     | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Describe in detail the trends of atomic radius, ionization energy, electron affinity, and electronegativity in a group. Give suitable examples.              | K1      | CO1 |
| 2          | 17           | What is lattice energy? Write the Born-Haber cycle for NaCl and explain its applications.                                                                    | K1      | CO2 |
| 3          | 18           | Construct a MO diagram for NO and N <sub>2</sub> molecules and calculate bond order.                                                                         | K3      | CO3 |
| 4          | 19           | (a) Illustrate Maxwell Boltzmann distribution laws of molecular velocities<br>(b) Explain the effect of temperature on distribution of molecular velocities. | K4      | CO4 |
| 5          | 20           | Apply the hybridization principle to ascertain the structure of methane, Ethylene and acetylene.                                                             | K4      | CO5 |