

**PSG COLLEGE OF ARTS & SCIENCE**  
(AUTONOMOUS)

**BSc DEGREE EXAMINATION DECEMBER 2025**  
(Third Semester)

Common to Branches – **CHEMISTRY & BIOCHEMISTRY**

**PHYSICS - I**

Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer **ALL** questions

**ALL** questions carry **EQUAL** marks  $(10 \times 1 = 10)$

| Module No. | Question No. | Question                                                                                                                                                                                                                 | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | The frequency of simple harmonic motion is _____.<br>a) number of vibrations per second<br>b) number of oscillations per second<br>c) number of rotations per second<br>d) number of twists per second                   | K1      | CO1 |
|            | 2            | In the longitudinal mode of Melde's experiment, the tuning fork vibrates _____ the length of the string.<br>a) up and down with      b) perpendicular to<br>c) along the direction of    d) side by side with            | K2      | CO1 |
| 2          | 3            | Lubrication is used to _____.<br>a) increase friction      b) decrease friction<br>c) increase temperature    d) decrease speed                                                                                          | K1      | CO2 |
|            | 4            | Surface tension decreases with _____ of the liquid.<br>a) increase in surface area<br>b) increase in temperature<br>c) increase in density<br>d) decrease in pressure                                                    | K2      | CO2 |
| 3          | 5            | Which of the following processes cause a decrease in entropy?<br>a) melting of ice      b) evaporation of water<br>c) freezing of water    d) boiling of water                                                           | K1      | CO3 |
|            | 6            | Helium II is formed when Helium I is cooled below _____.<br>a) 2.19K                      b) 2.17K<br>c) 2.71K                      d) 2.41K                                                                             | K2      | CO3 |
| 4          | 7            | The capacitance of a parallel plate capacitor increases with _____.<br>a) decreasing plate area of capacitor<br>b) increasing distance between plates<br>c) using dielectric slab between them<br>d) using copper plates | K1      | CO4 |
|            | 8            | In a purely resistive circuit, the value of power factor is _____.<br>a) zero                      b) one<br>c) infinity                    d) half                                                                      | K2      | CO4 |
| 5          | 9            | Dispersion of light is caused by _____.<br>a) equal speed of all colours in a medium<br>b) different speeds of different colours in medium<br>c) reflection<br>d) absorption                                             | K1      | CO5 |
|            | 10           | Constant deviation prisms are commonly used in _____.<br>a) telescopes                b) cameras<br>c) binoculars                d) spectrometers                                                                        | K2      | CO5 |

Cont...

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks  $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                                | K Level | CO  |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Discuss on the laws of transverse vibration of strings.<br><br>(OR)                                                                     | K2      | CO1 |
|            | 11.b.        | Describe the measurement of frequency of AC main using Sonometer with neat sketch.                                                      |         |     |
|            | 12.a.        | Examine on the determination of Rigidity modulus of a wire by torsional pendulum.<br><br>(OR)                                           |         |     |
| 2          | 12.b.        | Simplify on the molecular theory of surface tension of liquids.                                                                         | K4      | CO2 |
|            | 13.a.        | Examine and discuss on the Porous plug experiment using Joule-Kelvin effect.<br><br>(OR)                                                |         |     |
|            | 13.b.        | Analyze on the change of entropy in a reversible process by plotting a PV diagram.                                                      |         |     |
| 3          | 14.a.        | Construct a capacitor using a pair of metal plates and derive an expression for the energy stored in the charged capacitor.<br><br>(OR) | K4      | CO3 |
|            | 14.b.        | Develop and derive the expression for peak, average and RMS value of an alternating current.                                            |         |     |
|            | 15.a.        | Illustrate on the calculation of refractive index of a prism by grazing incidence method.<br><br>(OR)                                   |         |     |
| 5          | 15.b.        | Outline the construction and use of direct vision prisms.                                                                               | K3      | CO5 |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                                                        | K Level | CO  |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Analyze on the production of Ultrasonic waves using Piezo electric method.                                                      | K4      | CO1 |
| 2          | 17           | Analyze on the comparison of viscosities of two liquids using burette method with neat sketch.                                  | K4      | CO2 |
| 3          | 18           | Examine on Liquefaction of gases. Illustrate on Linde's process of liquefaction of air.                                         | K4      | CO3 |
| 4          | 19           | Examine on Biot-Savart law. Derive an expression for the magnetic field induction(B) along the axis of a coil carrying current. | K4      | CO4 |
| 5          | 20           | Examine the air cell method of determining the refractive index of a liquid with neat sketch.                                   | K4      | CO5 |

**PSG COLLEGE OF ARTS & SCIENCE**  
(AUTONOMOUS)

**BSc DEGREE EXAMINATION DECEMBER 2025**  
(Fourth Semester)

Common to Branches – **CHEMISTRY & BIOCHEMISTRY**  
**PHYSICS-II**

Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer ALL questions

**ALL questions carry EQUAL marks**

**(10 × 1 = 10)**

| Module No. | Question No. | Question                                                                                                                                                                                                                            | K Level | CO  |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | The optical path difference in a wedge-shaped film is<br>a) $\mu t \cos(\beta + \gamma)$ b) $2\mu t \cos(\beta + \gamma) + \lambda/2$<br>c) $2\mu t \cos(\beta + \gamma) - 3\lambda/4$ d) $2\mu t \cos(\beta + \gamma) - \lambda/2$ | K1      | CO1 |
|            | 2            | X-ray crystallography uses which characteristic of light?<br>a) Polarization      b) Interference<br>c) Diffraction      d) Coherency                                                                                               | K2      | CO1 |
| 2          | 3            | The principal quantum number (n) in the hydrogen atom represents:<br>a) Angular momentum      b) Energy level<br>c) Spin of the electron      d) Magnetic quantum number                                                            | K1      | CO2 |
|            | 4            | The ground state of the hydrogen atom corresponds to which set of quantum numbers?<br>a) $n = 1, l = 0, m = 0$<br>b) $n = 1, l = 1, m = 0$<br>c) $n = 2, l = 0, m = 0$<br>d) $n = 2, l = 1, m = 0$                                  | K2      | CO2 |
| 3          | 5            | Heavy nuclei must be such that they can be fissioned by neutrons of energy such substance are called?<br>a) fission fragments      b) fission neutrons<br>c) fission species      d) fission element                                | K1      | CO3 |
|            | 6            | _____ is usually expressed in a unit of Nuclear binding energy.<br>a) Mev      b) ev<br>c) kev      d) Joules                                                                                                                       | K2      | CO3 |
| 4          | 7            | For Einstein's relation, $E^2 - p^2c^2 =$<br>a) $m_0c^2$<br>b) $m^2c^4$<br>c) $m_0c^4$<br>d) $m^2c^6$                                                                                                                               | K1      | CO4 |
|            | 8            | The Schrodinger wave equation is a mathematical depression describing<br>a) Energy of the electron<br>b) Momentum of the electron<br>c) Position of the electron<br>d) All of the above                                             | K2      | CO4 |
| 5          | 9            | The Zener diode is used as<br>a) Shunt regulator      b) Series regulator<br>c) Rectifiers      d) Clamper                                                                                                                          | K1      | CO5 |
|            | 10           | Electro-optical effect is produced in<br>a) LCD      b) LED<br>c) OFC      d) OLED                                                                                                                                                  | K2      | CO5 |

Cont...

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                              | K Level | CO  |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Identify the condition $2\mu t \cos(\beta + \gamma) = n\lambda$ for destructive interference in a thin wedge shaped film?<br><br>(OR) | K3      | CO1 |
|            | 11.b.        | Make use of Fresnel diffraction to explain rectilinear propagation of light.                                                          |         |     |
| 2          | 12.a.        | Differentiate between the magnetic dipole moment of orbital and spin motion?<br><br>(OR)                                              | K4      | CO2 |
|            | 12.b.        | Bring out the importance of any two quantum numbers.                                                                                  |         |     |
| 3          | 13.a.        | Explain the facts on Shell model of the nucleus.<br><br>(OR)                                                                          | K5      | CO3 |
|            | 13.b.        | Discuss on the importance of Geiger Muller counter.                                                                                   |         |     |
| 4          | 14.a.        | Explain on Length Contraction.<br><br>(OR)                                                                                            | K6      | CO4 |
|            | 14.b.        | Assess the physical significance of Schrodinger's wave function.                                                                      |         |     |
| 5          | 15.a.        | Prove the De Morgans theorem with its truth table and figure.<br><br>(OR)                                                             | K5      | CO5 |
|            | 15.b.        | Construct the basic gates using discrete components with suitable figure and satisfying truth table.                                  |         |     |

**SECTION -C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                  | K Level | CO  |
|------------|--------------|---------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Describe on the construction of Michelson interferometer and its results. | K3      | CO1 |
| 2          | 17           | Differentiate the atomic model and vector model of an atom.               | K4      | CO2 |
| 3          | 18           | Classify the types of nuclear fission reactors.                           | K4      | CO3 |
| 4          | 19           | Derive Lorentz transformation equations.                                  | K5      | CO4 |
| 5          | 20           | Explain why NAND gate is called as universal building block.              | K5      | CO5 |

**PSG COLLEGE OF ARTS & SCIENCE  
(AUTONOMOUS)**

**BSc DEGREE EXAMINATION DECEMBER 2025**  
**(First Semester)**

Common to Branches - COMPUTER SCIENCE / INFORMATION TECHNOLOGY / COMPUTER TECHNOLOGY / COMPUTER SCIENCE WITH DATA ANALYTICS

## DIGITAL FUNDAMENTALS AND COMPUTER ARCHITECTURE / FUNDAMENTALS OF DIGITAL COMPUTERS

Time: Three Hours

Maximum: 75 Marks

### SECTION-A (10 Marks)

**SECTION-A (10 MARKS)**

**Answer ALL questions**  
**ALL questions carry EQUAL marks**

$$(10 \times 1 = 10)$$

**Cont...**

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks  $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                                | K Level | CO  |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Exponent on Indian contributions to mathematics.<br><br>(OR)                                                                            | K2      | CO1 |
|            | 11.b.        | Explain the applications of Vedic mathematics in detail.                                                                                |         |     |
| 2          | 12.a.        | Explore the Components of a Digital Computer.<br><br>(OR)                                                                               | K3      | CO2 |
|            | 12.b.        | List out the various logic gates in digital computer and explain with diagram and truth table.                                          |         |     |
| 3          | 13.a.        | Simplify the Boolean function $f(x,y,z) = \sum(0,2,4,5,6)$ using Map method.<br><br>(OR)                                                | K3      | CO3 |
|            | 13.b.        | Construct a 3-to-8 line decoder and explain in detail.                                                                                  |         |     |
| 4          | 14.a.        | Illustrate the conversion process of the expression $A*B+C*D$ of infix notation to the reverse polish notation using stack.<br><br>(OR) | K4      | CO4 |
|            | 14.b.        | Discuss in detail about the associative memory.                                                                                         |         |     |
| 5          | 15.a.        | Describe the parallel processing in detail with an example.<br><br>(OR)                                                                 | K4      | CO5 |
|            | 15.b.        | Demonstrate the pipeline unit for floating-point addition and subtraction with an example.                                              |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                                                                                   | K Level | CO  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Elaborate the Encoding Knowledge in ancient texts.                                                                                                         | K4      | CO1 |
| 2          | 17           | Express the function $F(w,x,y,z) = y'z + wxy' + wxz' + w'x'z$ in a sum of minterms and a product of maxterms.                                              | K4      | CO2 |
| 3          | 18           | Simplify the following Boolean function using Map method:<br>i) $F(w,x,y,z) = \sum(0,1,2,4,5,6,8,9,12,13,14)$<br>ii) $F = A'B'C' + B'CD' + A'BCD' + AB'C'$ | K4      | CO3 |
| 4          | 19           | Analyse the different Addressing modes using suitable examples.                                                                                            | K4      | CO4 |
| 5          | 20           | Explore the RISC pipeline in detail.                                                                                                                       | K4      | CO5 |

**PSG COLLEGE OF ARTS & SCIENCE**  
 (AUTONOMOUS)

**BSc DEGREE EXAMINATION DECEMBER 2025**  
 (First Semester)

Common to Branches - COMPUTER SCIENCE / INFORMATION TECHNOLOGY /  
 COMPUTER TECHNOLOGY / COMPUTER NETWORKING & MOBILE  
 APPLICATIONS / COMPUTER SCIENCE WITH DATA ANALYTICS

**PROGRAMMING AND PROBLEM SOLVING USING C**

Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

| Module No. | Question No. | Question                                                                                                                                                                                                                                                                                 | K Level | CO  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | Which of the following programming paradigms is associated with modular design?<br>A) Object-Oriented Programming B) Functional Programming<br>C) Procedural Programming D) All of the above                                                                                             | K1      | CO1 |
|            | 2            | Estimate the output of <code>printf("%d", 10 / 4);</code> in C.<br>A) 2.5 B) 2 C) 3 D) 2.0                                                                                                                                                                                               | K2      | CO1 |
| 2          | 3            | Tabulate the correct order of execution in a for loop.<br>A) Initialization → Condition → Update → Body<br>B) Condition → Initialization → Body → Update<br>C) Initialization → Body → Condition → Update<br>D) Body → Initialization → Condition → Update                               | K1      | CO2 |
|            | 4            | Classify which of the following is a valid way to declare and initialize a string in C.<br>A) <code>char str[5] = "Hello";</code> B) <code>char str[] = "Hello";</code><br>C) <code>string str = "Hello";</code> D) <code>char str = "Hello";</code>                                     | K2      | CO2 |
| 3          | 5            | Identify the valid index range for an array <code>int a[5];</code><br>A) 1 to 5 B) 0 to 4 C) 0 to 5 D) -1 to 4                                                                                                                                                                           | K1      | CO3 |
|            | 6            | Identify the operator used to access the value stored at the memory address of a pointer.<br>A) & B) * C) -> D).                                                                                                                                                                         | K2      | CO3 |
| 4          | 7            | Identify the correct statement about a function prototype.<br>A) It is written after <code>main()</code> only<br>B) It specifies function name, parameters, and return type before its use<br>C) It allocates memory for function variables<br>D) It executes the function automatically | K1      | CO4 |
|            | 8            | Compare structure and union. Which statement is true?<br>A) Both allocate separate memory for each member<br>B) Union allocates shared memory for all members<br>C) Structure cannot contain arrays<br>D) Union supports nested definitions, but structure does not                      | K2      | CO4 |
| 5          | 9            | Describe what happens when a file is opened with "w" mode.<br>A) Opens for writing only<br>B) Opens for appending only<br>C) Opens for writing, deletes existing contents<br>D) Opens for both reading and writing                                                                       | K1      | CO5 |
|            | 10           | Which of the following is <code>argv[0]</code> when a program runs.<br>A) First command line argument<br>B) Program name/path<br>C) Null character<br>D) Last argument                                                                                                                   | K2      | CO5 |

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

| Module No. | Question No. | Question                                                                                | K Level | CO  |  |  |
|------------|--------------|-----------------------------------------------------------------------------------------|---------|-----|--|--|
| 1          | 11.a.        | Apply the steps involved in program development and demonstrate with suitable examples. | K3      | CO3 |  |  |
|            | (OR)         |                                                                                         |         |     |  |  |
|            | 11.b.        | Write a C program to demonstrate formatted input/output using scanf() and printf()      |         |     |  |  |
| 2          | 12.a.        | Review the advantages and disadvantages of using the goto statement in C.               | K2      | CO2 |  |  |
|            | (OR)         |                                                                                         |         |     |  |  |
|            | 12.b.        | Discuss the importance of string conversion functions in handling user input.           |         |     |  |  |
| 3          | 13.a.        | Discuss how arrays are related to strings in terms of declaration and storage.          | K3      | CO3 |  |  |
|            | (OR)         |                                                                                         |         |     |  |  |
|            | 13.b.        | Illustrate with a program how to assign the address of a variable to a pointer.         |         |     |  |  |
| 4          | 14.a.        | Examine the definition of function in C and explain its general syntax with an example. | K4      | CO4 |  |  |
|            | (OR)         |                                                                                         |         |     |  |  |
|            | 14.b.        | Analyze the difference between a structure and a union                                  |         |     |  |  |
| 5          | 15.a.        | Discriminate between formatted and unformatted file I/O functions.                      | K1      | CO5 |  |  |
|            | (OR)         |                                                                                         |         |     |  |  |
|            | 15.b.        | What are command line arguments in C? Examine their purpose with an example.            |         |     |  |  |

**SECTION -C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 × 10 = 30)

| Module No. | Question No. | Question                                                                                                 | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Analyze identifiers and keywords in C with suitable examples.                                            | K4      | CO1 |
| 2          | 17           | Explore about Standard Functions of string handling with examples.                                       | K4      | CO2 |
| 3          | 18           | How arrays of pointers are useful in handling function arguments? Justify with an example.               | K4      | CO3 |
| 4          | 19           | Define a function prototype and Develop a program with a function prototype for addition of two numbers. | K4      | CO4 |
| 5          | 20           | List out the steps involved in performing file operations in C, with example.                            | K4      | CO5 |

**PSG COLLEGE OF ARTS & SCIENCE  
(AUTONOMOUS)**

**BSc DEGREE EXAMINATION DECEMBER 2025**  
**(Second Semester)**

Common to Branches - INFORMATION TECHNOLOGY & COMPUTER TECHNOLOGY

## DATA STRUCTURES

Maximum: 75 Marks

Time: Three Hours

**SECTION-A (10 Marks)**  
Answer ALL questions  
ALL questions carry EQUAL marks

$$(10 \times 1 = 10)$$

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                         | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Explain Traversing in linear arrays.                                             | K6      | CO1 |
|            |              | (OR)                                                                             |         |     |
|            | 11.b.        | Explain String operations: substring and concatenation with examples.            |         |     |
| 2          | 12.a.        | Demonstrate Linear Search with its Algorithm.                                    | K3      | CO2 |
|            |              | (OR)                                                                             |         |     |
|            | 12.b.        | Illustrate Insertion Sort Algorithm for a given set of data.                     |         |     |
| 3          | 13.a.        | Compare and Contrast linked list and two way list.                               | K2      | CO3 |
|            |              | (OR)                                                                             |         |     |
|            | 13.b.        | Discuss about Deleting the node following a given node algorithm in linked list. |         |     |
| 4          | 14.a.        | Explain list representation of a priority queue.                                 | K6      | CO4 |
|            |              | (OR)                                                                             |         |     |
|            | 14.b.        | Explain Recursion for finding factorial of a number.                             |         |     |
| 5          | 15.a.        | Explain Linked representation of binary trees.                                   | K6      | CO5 |
|            |              | (OR)                                                                             |         |     |
|            | 15.b.        | Explain Sequential representation of graphs.                                     |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                           | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Explain about two dimensional arrays and summarize the algorithm to perform matrix multiplication. | K6      | CO1 |
| 2          | 17           | Employ Merge Sort Algorithm for a set of data and compute its complexity.                          | K3      | CO2 |
| 3          | 18           | Explain insertion of a node at the beginning of a list and after a given node in linked list.      | K2      | CO3 |
| 4          | 19           | Explain the algorithm to transform infix expressions into postfix expressions.                     | K6      | CO4 |
| 5          | 20           | Formulate Preorder and Inorder tree traversal.                                                     | K6      | CO5 |

PSG COLLEGE OF ARTS & SCIENCE  
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025  
(Second Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING- II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks  $(10 \times 1 = 10)$

| Module No. | Question No. | Question                                                                                                                                                                                                                                                                                              | K Level | CO  |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | _____ different sets of truth values assignments for the variables $P, Q$ and $R$ .<br>(a) $n$ (b) $\infty$ (c) $2^n$ (d) $2^3$                                                                                                                                                                       | K1      | CO1 |
|            | 2            | $(P \Leftrightarrow Q) \Leftrightarrow$ _____<br>(a) $(P \Lambda Q) V (\neg P \Lambda \neg Q)$ (b) $(P V Q) \Lambda (\neg P V \neg Q)$<br>(c) $(P \Lambda Q) \Lambda (\neg P \Lambda \neg Q)$ (d) $(\neg P \Lambda \neg Q)$                                                                           | K2      | CO1 |
| 2          | 3            | The number of elements in A is equal to the number of elements in B is called _____<br>(a) Equivalence set (b) equal (c) null set (d) disjoint set                                                                                                                                                    | K1      | CO2 |
|            | 4            | A relation R is defined on the set of integers by<br>$R = \{(a, b) : a - b \text{ is even}\}$ Then R is<br>(a) reflexive only (b) symmetric only<br>(c) reflexive, symmetric and transitive (d) none of these                                                                                         | K2      | CO2 |
| 3          | 5            | function have the same domain and range<br>(a) Composite function (b) Identity<br>(c) Invertible (d) Cartesian                                                                                                                                                                                        | K1      | CO3 |
|            | 6            | If $f = \{(1, 1), (2, 3), (3, 1), (4, 2)\}$ , and $g = \{(1, 2), (2, 3), (3, 1), (4, 2)\}$ , then $g \circ f =$ _____<br>(a) $\{(1, 2), (2, 1), (3, 2), (4, 3)\}$<br>(b) $\{(1, 2), (2, 1), (3, 1), (4, 3)\}$<br>(c) $\{(1, 2), (2, 1), (3, 4), (4, 3)\}$<br>(d) $\{(1, 1), (2, 2), (3, 2), (4, 3)\}$ | K2      | CO3 |
| 4          | 7            | A graph whose edge set is empty is called a _____<br>(a) Null graph (b) empty graph<br>(c) disconnected graph (d) edge connected graph                                                                                                                                                                | K1      | CO4 |
|            | 8            | If a graph $G$ has more than one component then $G$ is called _____ graph.<br>(a) Connected (b) disconnected<br>(c) complete (d) complete bipartite                                                                                                                                                   | K2      | CO4 |
| 5          | 9            | Peterson graph is _____<br>(a) Eulerian and Hamiltonian<br>(b) Eulerian but not Hamiltonian<br>(c) Hamiltonian but not Eulerian<br>(d) Not Eulerian and not Hamiltonian                                                                                                                               | K1      | CO5 |
|            | 10           | In a graph $G$ , to find a closed walk running through every edge of $G$ exactly once such a walk is called _____<br>(a) Hamiltonian line (b) Euler line<br>(c) components (d) disconnected                                                                                                           | K2      | CO5 |

Cont...

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks  $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                                                                                                                                                                                                    | K Level | CO  |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Constructs the truth table for the formula<br>$(P \wedge Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q) \vee (\neg P \wedge \neg Q)$<br>(OR)                                                                                                                                                              | K3      | CO1 |
|            | 11.b.        | Verify whether $(P \rightarrow Q) \Rightarrow (\neg Q \rightarrow \neg P)$ is a tautology.                                                                                                                                                                                                                  |         |     |
| 2          | 12.a.        | (i) Explain equivalence relation (ii) Define incidence matrix.<br>(OR)                                                                                                                                                                                                                                      | K2      | CO2 |
|            | 12.b.        | If $A = \{1,5\}$ , $B = \{6,7,8,9\}$ and $C = \{6,7,10\}$<br>Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$                                                                                                                                                                               |         |     |
| 3          | 13.a.        | Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be both one-one and onto<br>functions then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$<br>(OR)                                                                                                                                                    | K3      | CO3 |
|            | 13.b.        | Let $A = \{1,2,3,4\}$ Le $R = \{(1,1), (1,2), (2,3), (2,4), (3,4), (4,1), (4,2)\}$ and $S = \{(3,1), (4,4), (2,3), (2,4), (1,1), (1,4)\}$ be two relations on A. compute (i) Is $(1,3) \in R \circ R$ ? (ii) Is $(4,3) \in S \circ R$ ? (iii) Is $(1,1) \in R \circ S$ ? (iv) $S \circ R$ , (v) $R \circ S$ |         |     |
| 4          | 14.a.        | Prove that a simple graph with $n$ vertices and $k$ components<br>can have at most<br>$\frac{(n-k)(n-k+1)}{2}$ edges.<br>(OR)                                                                                                                                                                               | K3      | CO4 |
|            | 14.b.        | Prove that the number of vertices of odd degree in a graph is<br>always even.                                                                                                                                                                                                                               |         |     |
| 5          | 15.a.        | Explain shortest path problem.<br>(OR)                                                                                                                                                                                                                                                                      | K2      | CO5 |
|            | 15.b.        | Explain Fluery's algorithm to trace an Eulerian trail in an<br>even graph.                                                                                                                                                                                                                                  |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                         | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Discuss all the connectives.                                                                     | K4      | CO1 |
| 2          | 17           | Explain types of Digraph.                                                                        | K3      | CO2 |
| 3          | 18           | Explain the types of relations.                                                                  | K5      | CO3 |
| 4          | 19           | Discuss about the types of graphs.                                                               | K4      | CO4 |
| 5          | 20           | Prove that a connected graph $G$ is an Euler graph if<br>all vertices of $G$ are of even degree. | K4      | CO5 |

Z-Z-Z END

TOTAL PAGES: 2  
25CMU103/25CTU103/  
22CMU103N/22CTU103N

# **PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)**

**BSc DEGREE EXAMINATION DECEMBER 2025**  
**(First Semester)**

Common to Branches – COMPUTER SCIENCE / COMPUTER TECHNOLOGY /

## **MATHEMATICS FOR COMPUTING - I**

### Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer **ALL** questions

**ANSWER ALL questions**

$$(10 \times 1 = 10)$$

| Module No. | Question No. | Question                                                                                                                                                                                                                             | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | The rank of a matrix is always,<br>A) Equal to the number of columns<br>B) Greater than the number of rows<br>C) Less than or equal to the smaller of the number of rows or columns<br>D) The square of the number of rows           | K1      | CO1 |
|            | 2            | Which statement is true if all eigenvalues of a matrix are distinct?<br>A) The matrix is not invertible<br>B) The matrix has linearly dependent eigenvectors<br>C) The matrix must be symmetric<br>D) The matrix can be diagonalized | K2      | CO1 |
| 2          | 3            | Which of the following is a linear differential equation?<br>A) $y'' + y^2 = 0$ B) $yy'' + y' = 0$<br>C) $y'' + yy' = 0$ D) $y'' + xy' + y = 0$                                                                                      | K1      | CO2 |
|            | 4            | The complete integral for the equation $Z = p^x + qy + pq$ is<br>A) $Z = ax + by + ab$ B) $Z = ax + bx + a^2$<br>C) $Z = ax + by + b^2$ D) $Z = ax + bx + a$                                                                         | K2      | CO2 |
| 3          | 5            | In Gauss elimination, the coefficient matrix is transformed into:<br>A) Upper triangular matrix      B) Lower triangular matrix<br>C) Diagonal matrix      D) Identity matrix                                                        | K1      | CO3 |
|            | 6            | Which method converge, if the coefficient matrix is diagonally dominant and non-singular ?<br>A) Jacobi      B) seidal      C) both      D) none                                                                                     | K2      | CO3 |
| 4          | 7            | The value of interpolation step $h$ in Newton's formulas is:<br>A) $h = x_{i+1} - x_i$ (constant for all $i$ )<br>B) $h = x_{i+1} - x_i$ (variable)<br>C) $h = x - x_0$<br>D) $h = x - x_n$                                          | K1      | CO4 |
|            | 8            | If the degree of the polynomial used in Newton's interpolation is $n$ , then it requires<br>A) $n$ data points      B) $n + 1$ data points<br>C) $2n$ data points      D) Infinite data points                                       | K2      | CO4 |
| 5          | 9            | The local truncation error in Euler's method is of order:<br>A) $O(h)$ B) $O(h^2)$ C) $O(h^3)$ D) $O(h^0)$                                                                                                                           | K1      | CO5 |
|            | 10           | The modified Euler's method is also called<br>A) Runge-Kutta 2nd order method<br>B) Newton's method<br>C) Heun's method<br>D) Adams-Bashforth method                                                                                 | K2      | CO5 |

Cont...

SECTION - B (35 Marks)

Answer ALL questions  
ALL questions carry EQUAL Marks  $(5 \times 7 = 35)$

| Module No. | Question No. | Question                                                                                                                                                                 | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Find the rank of a matrix<br>$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$<br>(OR)                                | k2      | CO1 |
|            | 11.b.        | Find the characteristic equation and inverse of<br>$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$                                               |         |     |
| 2          | 12.a.        | Solve $\frac{dy}{dx} = \frac{y}{x}$ , $y(1) = 2$ .<br>(OR)                                                                                                               | K3      | CO2 |
|            | 12.b.        | Solve $p^2 + q^2 = npq$ .                                                                                                                                                |         |     |
| 3          | 13.a.        | Solve the system, by Gauss-Elimination method,<br>$2x + 3y - z = 5$ ; $4x + 4y - 3z = 3$ ; $2x - 3y + 2z = 2$<br>(OR)                                                    | K3      | CO3 |
|            | 13.b.        | Solve, by using Gauss seidal method,<br>$28x + 4y - z = 32$ ; $x + 3y + 10z = 24$ ; $2x + 17y + 4z = 35$                                                                 |         |     |
| 4          | 14.a.        | From the following data, find $\frac{dy}{dx}$ for $x=1.05$<br>X: 1.00 1.05 1.10 .15 1.20 1.25 1.30<br>Y: 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017<br>(OR) | K3      |     |
|            | 14.b.        | Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using Simpson's rule by dividing the range into 6 equal parts.                                                                      |         |     |
| 5          | 15.a.        | Use Euler's method, solve the differential equation,<br>$\frac{dy}{dx} = x + y$ , $y(0) = 1$ for $x = 0.0(0.2)1.0$<br>(OR)                                               | K2      | CO5 |
|            | 15.b.        | Use the second-order Runge-Kutta method (RK2) with step size $h = 0.1$ to approximate $y(0.1)$ , given<br>$\frac{dy}{dx} = x + y$ , $y(0) = 1$                           |         |     |

SECTION - C (30 Marks)

Answer ANY THREE questions  
ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$

| Module No. | Question No. | Question                                                                                                                                                                         | K Level | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Examine the consistency of the following equations and if it is consistent solve the equations $2x+y-z=1$ ; $x-y+2z=3$ ; $3x+2y+z=4$ .                                           | K4      | CO1 |
| 2          | 17           | Solve $(D+1)^2 y = 6te^{-t}$ .                                                                                                                                                   | K3      | CO2 |
| 3          | 18           | Solve by using Gauss Jordan method<br>$10x + y + z = 12$ ; $x + 10y + z = 12$ ; $x + y + 10z = 12$                                                                               | K3      | CO3 |
| 4          | 19           | Compute the first two derivatives of $(x)^{1/3}$ at $x=50$ and $x=56$<br>gives the table below<br>X: 50 51 52 53 54 55 56<br>Y: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 | K2      | CO4 |
| 5          | 20           | Apply Modified Euler method with step size $h = 0.2$ to estimate $y(0.4)$ , given: $\frac{dy}{dx} = x^2 + y$ , $y(0) = 1$ .                                                      | K2      | CO5 |

**PSG COLLEGE OF ARTS & SCIENCE  
(AUTONOMOUS)**

**BSc/ BVoc DEGREE EXAMINATION DECEMBER 2025**  
**(First Semester)**

**Common to Branches – HOSPITALITY AND TOURISM MANAGEMENT/  
HOSPITALITY MANAGEMENT**

## **FOOD AND BEVERAGE SERVICE – I**

Time: Three Hours

Maximum: 75 Marks

### **SECTION-A (10 Marks)**

**SECTION A**  
Answer ALL questions  
ALL questions carry EQUAL marks

$$(10 \times 1 = 10)$$

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                   | K Level   | CO  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 1          | 11.a.        | Explain the types of restaurants and describe any two with their salient features.<br><br>(OR)                             | K2,<br>K3 | CO1 |
|            | 11.b.        | Draw the organizational chart of a food and beverage service department and outline the roles and duties of key personnel. |           |     |
| 2          | 12.a.        | Express about the different types of Crockery and Cutlery used in restaurants with suitable examples<br><br>(OR)           | K3        | CO2 |
|            | 12.b.        | Ascertain the functions of the Still Room and the Hot Plate section in a restaurant.                                       |           |     |
| 3          | 13.a.        | Determine the factors that influence the styles of service.<br><br>(OR)                                                    | K3        | CO3 |
|            | 13.b.        | Examine the characteristics, applications advantages and disadvantages of Static Menu and Cyclic Menu.                     |           |     |
| 4          | 14.a.        | Discuss about the characteristics, advantages, disadvantages of manual billing and computerized billing.<br><br>(OR)       | K2        | CO4 |
|            | 14.b.        | Summarize the characteristics of Bill as Cheque system and Bill with Order system quoting suitable examples.               |           |     |
| 5          | 15.a.        | Explain the different types of coffee commonly served in food and beverage establishments.<br><br>(OR)                     | K2        | CO5 |
|            | 15.b.        | Elaborate on milk-based drinks.                                                                                            |           |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                                                                                               | K Level | CO  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Explain on the intra- and inter-departmental relationships of the food and beverage service department and its significance on the smooth functioning of a restaurant. | K2      | CO1 |
| 2          | 17           | Discuss in detail on the various types of food service equipments used in restaurants and explain the functions of ancillary sections.                                 | K2      | CO2 |
| 3          | 18           | Illustrate the different styles of food service and describe the procedure for laying a cover for a full-course meal.                                                  | K3      | CO3 |
| 4          | 19           | Explore the methods of taking orders and billing systems in food and beverage service. Express the different payment methods used in restaurants.                      | K3      | CO4 |
| 5          | 20           | Determine the step-by-step process of manufacturing Tea.                                                                                                               | K3      | CO5 |

# **PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)**

**BSc DEGREE EXAMINATION DECEMBER 2025**  
**(Second Semester)**

Common to Branches - INFORMATION TECHNOLOGY & COMPUTER TECHNOLOGY

## PROGRAMMING IN C++

Time: Three Hours

Maximum: 75 Marks

### **SECTION-A (10 Marks)**

**Answer ALL questions**

**ALL** questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont.

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$ 

| Module No. | Question No. | Question                                                                                                                             | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | List and explain the key concepts of Object-Oriented Programming.<br><br>(OR)                                                        | K1      | CO1 |
|            | 11.b.        | Describe the predefined streams available in C++.                                                                                    |         |     |
| 2          | 12.a.        | Define inline functions with examples.<br><br>(OR)                                                                                   | K2      | CO2 |
|            | 12.b.        | Write a note on copy constructors with example.                                                                                      |         |     |
| 3          | 13.a.        | Which operators cannot be overloaded? Why?<br><br>(OR)                                                                               | K3      | CO3 |
|            | 13.b.        | Discuss the declaration and applications of an array of pointers.                                                                    |         |     |
| 4          | 14.a.        | What are virtual functions? Explain with examples.<br><br>(OR)                                                                       | K3      | CO4 |
|            | 14.b.        | Explain the working of new and delete operators in C++.                                                                              |         |     |
| 5          | 15.a.        | Explain the difference between templates and macros.<br><br>(OR)                                                                     | K4      | CO5 |
|            | 15.b.        | Write a C++ program that takes two strings from the user, compares them, and prints whether they are equal, or which one is greater. |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                                                                         | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | How C++ is more secure compared to C in terms of data handling?                                                                                  | K4      | CO1 |
| 2          | 17           | State the principles of function overloading with example and mention its precautions.                                                           | K3      | CO2 |
| 3          | 18           | Give a brief description about inheritance and its types.                                                                                        | K1      | CO3 |
| 4          | 19           | What are the steps for performing file operations? Explain with examples.                                                                        | K2      | CO4 |
| 5          | 20           | Define exception handling and provide an example that demonstrates the use of multiple catch statements to handle different types of exceptions. | K3      | CO5 |

Z-Z-Z END

**PSG COLLEGE OF ARTS & SCIENCE**  
(AUTONOMOUS)

**BSc DEGREE EXAMINATION DECEMBER 2025**  
(Fifth Semester)

Common to Branches – **MATHEMATICS & MATHEMATICS WITH COMPUTER APPLICATIONS**

**MAJOR ELECTIVE COURSE – I: NUMBER THEORY**

Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer **ALL** questions

ALL questions carry **EQUAL** marks

**(10 × 1 = 10)**

| Module No. | Question No. | Question                                                                                                                                                                                                                        | K Level | CO  |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1            | According to Principle of Mathematical Induction, If $P(n)$ is any statement involving natural numbers such that $P(1)$ is true and $P(r) = P(r^+)$ then _____ is true for all $N$ .<br>a) $P(n)$ b) $P(0)$ c) $P(n-2)$ d) None | K1      | CO1 |
|            | 2            | An integer $a$ is said to be divisible by a non zero integer if there exists another integer $c$ such that $a = bc$ , then $b$ is called _____ of $a$ .<br>a) Factor      b) integral part<br>c) imaginary part      d) None    | K2      | CO1 |
| 2          | 3            | A positive integer greater than 1 and not a _____ number is called composite number.<br>a) Factor      b) composite      c) Prime      d) None                                                                                  | K1      | CO1 |
|            | 4            | If two adjacent integers are prime then they are called _____ twins.<br>a) Identical      b) Siamese      c) different      d) None                                                                                             | K2      | CO1 |
| 3          | 5            | According to Fermat's conjecture, the integer $F_n =$ _____.<br>a) $2^{2^n}$ b) $2^{2^n} + 1$ c) $n+1$ d) None                                                                                                                  | K1      | CO1 |
|            | 6            | Fermat's numbers are _____.<br>a) Prime      b) Co-prime      c) composite      d) None                                                                                                                                         | K2      | CO1 |
| 4          | 7            | If $n$ is a prime number then $= (a + b)^n =$ _____.<br>a) $(a^n + b^n) \text{ mod } n$ b) $(a+b) \text{ mod } n$<br>c) $\text{mod } n$ d) none                                                                                 | K1      | CO1 |
|            | 8            | The congruence $x^2 \equiv 1 \pmod{p}$ has exactly two solutions namely 1 and _____.<br>a) $P-1$ b) $p$ c) $-1$ d) none                                                                                                         | K2      | CO1 |
| 5          | 9            | Any three positive integers $x, y, z$ such that $x^2 + y^2 = z^2$ are called as _____ triple.<br>a) Fermat      b) Newton      c) Pythagorean      d) None                                                                      | K1      | CO1 |
|            | 10           | Every prime $P$ can be represented as a sum of _____.<br>a) four squares      b) two squares<br>c) five cubes      d) None                                                                                                      | K2      | CO1 |

Cont...

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

| Module No. | Question No. | Question                                                                                                                 | K Level | CO  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | State and prove Trichotomy law.                                                                                          | K2      | CO1 |
|            |              | (OR)                                                                                                                     |         |     |
|            | 11.b.        | Prove that $[a, b] = \frac{ab}{(a, b)}$ where a, b are integers and $[a, b]$ is LCM of a, b and $(a, b)$ is HCF of a, b. |         |     |
| 2          | 12.a.        | Prove that $\frac{n}{\varphi(n)} = \sum_{d n} \frac{\mu^2(d)}{\varphi(d)}$ .                                             | K2      | CO3 |
|            |              | (OR)                                                                                                                     |         |     |
|            | 12.b.        | Find the highest power of 7 dividing 1000!                                                                               |         |     |
| 3          | 13.a.        | Prove that Fermat numbers are co-primes.                                                                                 | K2      | CO1 |
|            |              | (OR)                                                                                                                     |         |     |
|            | 13.b.        | Prove that $3^{4n+2} + 5^{2n+1} = M(14)$ .                                                                               |         |     |
| 4          | 14.a.        | Prove that $p!$ and $(p-1)! - 1$ are co-primes if p is an odd prime.                                                     | K3      | CO4 |
|            |              | (OR)                                                                                                                     |         |     |
|            | 14.b.        | Solve $5x \equiv 3 \pmod{24}$ .                                                                                          |         |     |
| 5          | 15.a.        | Find all the Pythagorean triples whose terms are in arithmetic progression.                                              | K4      | CO2 |
|            |              | (OR)                                                                                                                     |         |     |
|            | 15.b.        | Prove that $x^4 - y^4 = z^4$ has no solution in integers with $yz \neq 0$ .                                              |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks

(3 × 10 = 30)

| Module No. | Question No. | Question                                                                                                                                          | K Level | CO  |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Prove by Mathematical induction that $3^{2n-1} + 2^{n+1} = \mu(7)$ , where $n \in \mathbb{N}$ .                                                   | K2      | CO1 |
| 2          | 17           | Verify that 220 and 284 are amicable numbers $220 = 2^2 \cdot 5^1 \cdot 11^1$                                                                     | K2      | CO3 |
| 3          | 18           | Show that every number and its cube when divided by 6 leave the same remainder.                                                                   | K3      | CO4 |
| 4          | 19           | Show that $16^{99} \equiv 1 \pmod{437}$ .                                                                                                         | K4      | CO2 |
| 5          | 20           | Prove that if $n > 1$ , each non negative primitive solution of $x^2 + y^2 = n$ determine a unique a modulo n such that $ax \equiv -1 \pmod{n}$ . | K3      | CO4 |

**PSG COLLEGE OF ARTS & SCIENCE**  
(AUTONOMOUS)

**BSc DEGREE EXAMINATION DECEMBER 2025**  
(Fifth Semester)

Common to Branches – **MATHEMATICS & MATHEMATICS WITH COMPUTER APPLICATIONS**

**MAJOR ELECTIVE COURSE – I : ASTRONOMY**

Time: Three Hours

Maximum: 75 Marks

**SECTION-A (10 Marks)**

Answer ALL questions

ALL questions carry EQUAL marks (10 × 1 = 10)

| Module No. | Qn No. | Question                                                                                                                                                                                                                                                                                                                                                                    | K Level | CO  |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 1      | When will the sun comes to the first point of Libra?<br>(a) March 21 (b) June 21<br>(c) September 23 (d) December 23                                                                                                                                                                                                                                                        | K1      | CO1 |
|            | 2      | How will you call the portion of upper transit if a star when it is on the southern side of the zenith ?<br>(a) due east (b) due west<br>(c) due north (d) due south                                                                                                                                                                                                        | K2      | CO1 |
| 2          | 3      | A circumpolar star is a star that, as viewed from a specific location on Earth,<br>(a) Rises in the east and sets in the west every night<br>(b) Remains visible throughout the entire year, regardless of its location<br>(c) Never sets below the horizon and appears to circle around a celestial pole<br>(d) Is always found directly overhead at the observer's zenith | K1      | CO2 |
|            | 4      | How can we call the time when the sun is at the depth of $18^0$ below the horizon ?<br>(a) Astronomical twilight (b) nautical twilight<br>(c) civil twilight (d) twilight                                                                                                                                                                                                   | K2      | CO2 |
| 3          | 5      | Which of these celestial phenomena is caused by atmospheric refraction?<br>(a) The twinkling of stars<br>(b) The flattening of the sun at sunrise/sunset<br>(c) Both (a) and (b)<br>(d) Neither (a) nor (b)                                                                                                                                                                 | K1      | CO3 |
|            | 6      | Why do planets generally not twinkle, unlike stars?<br>(a) Planets are too far away<br>(b) Planets are not point sources of light<br>(c) Planets emit light continuously<br>(d) Planets do not refract light                                                                                                                                                                | K2      | CO3 |
| 4          | 7      | According to Kepler's First Law, where is the Sun located relative to a planet's elliptical orbit?<br>(a) At the center of the orbit.<br>(b) At one of the foci of the ellipse.<br>(c) At both foci.<br>(d) Anywhere along the semi-minor axis                                                                                                                              | K1      | CO4 |
|            | 8      | Kepler's Second Law, the Law of Areas, states that a planet's orbital line covers:<br>(a) Equal distances in equal time intervals.<br>(b) Equal areas in equal time intervals.<br>(c) Equal speeds in equal time intervals.<br>(d) Equal volumes in equal time intervals.                                                                                                   | K2      | CO4 |
| 5          | 9      | The linear diameter of the section of the moon is miles.<br>(a) 7613 (b) 2361<br>(c) 2163 (d) 2136                                                                                                                                                                                                                                                                          | K1      | CO5 |

Cont...

|   |    |                                                                                                                                                                                                  |    |     |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 5 | 10 | What are the three main types of solar eclipses?<br>(a) Total, partial, and annular<br>(b) Total, partial, and penumbral<br>(c) Annular, penumbral, and blood moon<br>(d) Partial, full, and new | K2 | CO5 |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks  $(5 \times 7 = 35)$ 

| Module No. | Qn No. | Question                                                                                                                                                                                                                                            | K Level | CO  |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.  | At a place in north latitude $\phi$ two stars A and B (declinations $\delta$ and $\delta_1$ respectively) rise at the same moment and A transits when B is setting, show that $\tan \phi \tan \delta = 1 - 2 \tan^2 \phi \tan^2 \delta_1$ .<br>(OR) | K2      | CO1 |
|            | 11.b.  | Find the relation between R.A and Longitude of the Sun.                                                                                                                                                                                             |         |     |
| 2          | 12.a.  | Define Dip of horizon and derive an expression for Dip.<br>(OR)                                                                                                                                                                                     | K2      | CO2 |
|            | 12.b.  | Show that the latitude of a place is equal to the arithmetic mean of the meridian altitudes of a circumpolar star.                                                                                                                                  |         |     |
| 3          | 13.a.  | Write a short note on Geocentric parallax.<br>(OR)                                                                                                                                                                                                  | K3      | CO3 |
|            | 13.b.  | Compute the coefficient of refraction k satisfying the tangent formula $r = k \tan z$ .                                                                                                                                                             |         |     |
| 4          | 14.a.  | If $v_1$ and $v_2$ are the velocities of the earth at perihelion and aphelion, Examine that $v_1(1 - e) = v_2(1 + e)$ where e is the eccentricity of earth's orbit.<br>(OR)                                                                         | K4      | CO4 |
|            | 14.b.  | Write the Kepler's laws of planetary motion.                                                                                                                                                                                                        |         |     |
| 5          | 15.a.  | If $\theta$ and $\phi$ are the semi vertical angles of the shadow and the cone of penumbra cast by the earth and if s be the semi diameter of the sun, Prove that $2 \sin s = \sin \theta + \sin \phi$ .<br>(OR)                                    | K5      | CO5 |
|            | 15.b.  | Determine the angle between a direct common tangent and the line of centre of two circles.                                                                                                                                                          |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks  $(3 \times 10 = 30)$ 

| Module No. | Question No. | Question                                                                                                                                                                                                                                                                                                                                                                                                               | K Level | CO  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | Describe Celestial Meridian.                                                                                                                                                                                                                                                                                                                                                                                           | K2      | CO1 |
| 2          | 17           | Find the number of consecutive nights having Twilight throughout night.                                                                                                                                                                                                                                                                                                                                                | K2      | CO2 |
| 3          | 18           | Taking the correction for refraction in the form $k \tan z$ , show that when the zenith distance of the moon is $\cos^{-1} \left( \frac{k}{p} \right)$ . The horizontal diameter is unaltered and when the zenith distance is $\cos^{-1} \left( \frac{k}{p} \right)^{\frac{1}{3}}$ the vertical diameter is unaltered by the combined effect of refraction and parallax ; P being the horizontal parallax of the moon. | K3      | CO3 |
| 4          | 19           | If $e = \sin \theta$ , Examine that when powers of e are neglected the value of u satisfying Kepler's equation is given by $\tan u = \sec \phi \tan 2x$ where $\tan x = \tan(45^\circ + \frac{\theta}{2}) \tan \frac{m}{2}$ .                                                                                                                                                                                          | K4      | CO4 |
| 5          | 20           | If the inferior ecliptic limits be $\pm \beta$ and if the moon revolves n times as fast as the sun , and its nodes regress $\theta$ for every revolution the moon makes round the earth, Prove that the minimum number of solar eclipses occurring at or near a node is $\frac{2(n-1)\beta}{n\theta+2\pi}$ .                                                                                                           | K5      | CO5 |