

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fifth Semester)

Branch – BIOTECHNOLOGY ECONOMICS AND PROTEOMICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Module No.	Question No.	Question	K Level	CO
1	1	Which of the following non-coding repetitive sequences are typically shorter than 500 bp and are not autonomous in their replication? a. LINEs b. SINEs c. Pseudogenes, d. Satellites	K1	CO1
	2	What is the primary purpose of gene annotation in structural genomics? a. To compare genomes of different species, b. To physically map genes on a chromosome, c. To assign functional and structural information to raw DNA sequences, d. To determine the order of DNA fragments	K1	CO1
2	3	The sequencing technology that involves mapping large-insert clones (like BACs) before fragmentation is known as: a. Whole-Genome Shotgun b. NGS c. Hierarchical Shotgun Sequencing d. Pyrosequencing	K2	CO2
	4	Distinguish the key difference between orthologs and paralogs. a. Orthologs arise from gene duplication, paralogs from speciation. b. Orthologs are non-coding; paralogs are coding. c. Orthologs are within a species; paralogs are across species. d. Orthologs arise from speciation; paralogs arise from gene duplication.	K2	CO2
3	5	In a typical 2D-Electrophoresis experiment, which property is used to separate proteins in the first dimension ? a. Molecular Weight b. Hydrophobicity c. Isoelectric Point (pI) d. Charge Density	K2	CO3
	6	Outline the principle that allows Mass Spectrometry to identify an unknown protein or peptide. a. Measuring the speed of the protein in an electric field. b. Determining the mass-to-charge ratio (m/z) of ionized peptides and matching it to a database. c. Separating proteins based on gel matrix migration. d. Using antibodies to detect specific protein sequences.	K2	CO3
4	7	The specialized area of proteomics focused on determining the three-dimensional atomic structure of proteins is called _____. a. Functional Proteomics b. Differential Proteomics c. Structural Proteomics d. Expression Proteomics	K2	CO4
	8	Summarize the main difference in application between Protein Microarrays and DNA Microarrays. a. DNA microarrays study protein function; protein microarrays study gene expression. b. Protein microarrays study protein binding/function; DNA microarrays study mRNA expression. c. DNA microarrays are used for sequencing; protein microarrays for quantification. d. Protein microarrays use fluorescent labels; DNA microarrays use radioisotopes.	K2	CO4

Cont...

5	9	Personalized Medicine primarily relies on information derived from which field of study? a. Systems Biology b. Pharmacogenomics c. Epidemiology d. Metabolomics	K2	CO5
	10	Explain the core purpose of High Throughput Screening (HTS) in the context of drug discovery. a. To validate the safety of clinical drug candidates. b. To determine the 3D structure of a drug target protein. c. To rapidly screen large chemical libraries for compounds that modulates a specific biological target. d. To analyze all metabolites in a cell.	K2	CO4

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Illustrate the procedure for RFLP (Restriction Fragment Length Polymorphism) as a DNA marker tool.	K4	CO1
		(OR)		
2	11.b.	Compare and contrast the characteristics of SINEs (Short Interspersed Nuclear Elements) and LINEs (Long Interspersed Nuclear Elements).	K4	CO2
	12.a.	Solve the process of hierarchical shotgun sequencing, highlighting its key steps and advantages over whole-genome shotgun sequencing.		
3		(OR)	K3	CO3
	12.b.	Apply the concepts of orthologs and paralogs to categorize gene relationships across different species and within the same species		
4	13.a.	Analyze the steps involved in a Yeast Two-Hybrid System and infer how it is used to identify protein-protein interactions.	K3	CO4
		(OR)		
5	13.b.	Examine the process of MALDI-TOF Mass Spectrometry and determine how it is specifically used for protein identification.	K3	CO5
	14.a.	Analyze the data output from a c-DNA microarray experiment and interpret the results to understand gene expression profiling.		
		(OR)		
	14.b.	Examine the field of Metabolomics and outline how it complements Genomics and Proteomics studies.		
	15.a.	Model the path of a drug from gene target identification using pharmacogenomics to the development of a personalized medicine.	K3	CO5
		(OR)		
	15.b.	Relate the concept of personalized medicine to the outcomes of pharmacogenomic studies in drug development.		

Cont...
)

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 × 10 = 30)

Module No.	Question No.	Question	K Level	CO
1	16	Analyze the different types of DNA Polymorphisms (RFLP, SNP, AFLP) and examine their significance as genetic markers in physical and genetic mapping.	K5	CO1
2	17	Examine the Human Genome Project (HGP), outlining its goals, initial procedures, and major outcomes that transformed modern biology.	K4	CO2
3	18	Analyze the process of 2D-Electrophoresis (Isoelectric Focusing and SDS-PAGE) and its limitations, and interpret why it is often coupled with Mass Spectrometry (LC/MS-MS) for comprehensive protein analysis.	K5	CO3
4	19	Analyze the use of Microarrays in proteomics. Compare and contrast different microarray types (protein and peptide) and determine their applications in drug discovery.	K4	CO4
5	20	Examine the role of Pharmacogenomics in High Throughput Screening (HTS) for drug discovery. Interpret how identifying gene targets using HTS contributes to developing safer and more effective drugs.	K4	CO5

Z-Z-Z END

