

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Common to Branches - **COMPUTER SCIENCE & COMPUTER TECHNOLOGY**

MATHEMATICS FOR COMPUTING- II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	_____ different sets of truth values assignments for the variables P, Q and R . (a) n (b) ∞ (c) 2^n (d) 2^3	K1	CO1
	2	$(P \Leftrightarrow Q) \Leftrightarrow$ _____ (a) $(P \Lambda Q) V (\neg P \Lambda \neg Q)$ (b) $(P V Q) \Lambda (\neg P V \neg Q)$ (c) $(P \Lambda Q) \Lambda (\neg P \Lambda \neg Q)$ (d) $(\neg P \Lambda \neg Q)$	K2	CO1
2	3	The number of elements in A is equal to the number of elements in B is called _____ (a) Equivalence set (b) equal (c) null set (d) disjoint set	K1	CO2
	4	A relation R is defined on the set of integers by $R = \{(a, b) : a - b \text{ is even}\}$ Then R is (a) reflexive only (b) symmetric only (c) reflexive, symmetric and transitive (d) none of these	K2	CO2
3	5	function have the same domain and range (a) Composite function (b) Identity (c) Invertible (d) Cartesian	K1	CO3
	6	If $f = \{(1, 1), (2, 3), (3, 1), (4, 2)\}$, and $g = \{(1, 2), (2, 3), (3, 1), (4, 2)\}$, then $g \circ f =$ _____ (a) $\{(1, 2), (2, 1), (3, 2), (4, 3)\}$ (b) $\{(1, 2), (2, 1), (3, 1), (4, 3)\}$ (c) $\{(1, 2), (2, 1), (3, 4), (4, 3)\}$ (d) $\{(1, 1), (2, 2), (3, 2), (4, 3)\}$	K2	CO3
4	7	A graph whose edge set is empty is called a _____ (a) Null graph (b) empty graph (c) disconnected graph (d) edge connected graph	K1	CO4
	8	If a graph G has more than one component then G is called _____ graph. (a) Connected (b) disconnected (c) complete (d) complete bipartite	K2	CO4
5	9	Peterson graph is _____ (a) Eulerian and Hamiltonian (b) Eulerian but not Hamiltonian (c) Hamiltonian but not Eulerian (d) Not Eulerian and not Hamiltonian	K1	CO5
	10	In a graph G , to find a closed walk running through every edge of G exactly once such a walk is called _____ (a) Hamiltonian line (b) Euler line (c) components (d) disconnected	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Constructs the truth table for the formula $(P \wedge Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q) \vee (\neg P \wedge \neg Q)$ (OR)	K3	CO1
	11.b.	Verify whether $(P \rightarrow Q) \Rightarrow (\neg Q \rightarrow \neg P)$ is a tautology.		
2	12.a.	(i) Explain equivalence relation (ii) Define incidence matrix. (OR)	K2	CO2
	12.b.	If $A = \{1,5\}$, $B = \{6,7,8,9\}$ and $C = \{6,7,10\}$ Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$		
3	13.a.	Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be both one-one and onto functions then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ (OR)	K3	CO3
	13.b.	Let $A = \{1,2,3,4\}$ Le $R = \{(1,1), (1,2), (2,3), (2,4), (3,4), (4,1), (4,2)\}$ and $S = \{(3,1), (4,4), (2,3), (2,4), (1,1), (1,4)\}$ be two relations on A. compute (i) Is $(1,3) \in R \circ R$? (ii) Is $(4,3) \in S \circ R$? (iii) Is $(1,1) \in R \circ S$? (iv) $S \circ R$, (v) $R \circ S$		
4	14.a.	Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges. (OR)	K3	CO4
	14.b.	Prove that the number of vertices of odd degree in a graph is always even.		
5	15.a.	Explain shortest path problem. (OR)	K2	CO5
	15.b.	Explain Fluery's algorithm to trace an Eulerian trail in an even graph.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Discuss all the connectives.	K4	CO1
2	17	Explain types of Digraph.	K3	CO2
3	18	Explain the types of relations.	K5	CO3
4	19	Discuss about the types of graphs.	K4	CO4
5	20	Prove that a connected graph G is an Euler graph if all vertices of G are of even degree.	K4	CO5

Z-Z-Z END