

**PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)**

BCA DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – COMPUTER APPLICATIONS

COMPUTER ORGANIZATION AND ARCHITECTURE

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

SECTION II

ALL questions carry EQUAL marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a	Explain integer and floating-point Arithmetic representation with examples. (OR)	K2	CO1
	11.b	i) Convert $(41.6875)_{10}$ into binary. ii) Convert $(0.513)_{10}$ to octal. iii) Convert $(673.124)_8$ to hexa decimal.		
2	12.a	Solve & Simplify the Boolean expression using Karnaugh map: $F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10,14)$. (OR)	K3	CO2
	12.b	Construct a 3-bit binary counter using T flip-flops and explain its working.		
3	13.a	Describe the characteristics of memory systems. (OR)	K3	CO3
	13.b	Illustrate the working of bus interconnection structure in computer systems.		
4	14.a	Explain the principles of cache memory organization with block diagram. (OR)	K4	CO4
	14.b	Compare programmed I/O, interrupt-driven I/O, and DMA with example.		
5	15.a	Illustrate the instruction cycle in detail with a flow diagram (OR)	K4	CO5
	15.b	Examine the performance trade-offs between RISC and CISC architectures.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16.	Apply integer arithmetic operations to solve problems using binary examples.	K4	CO1
2	17.	Demonstrate the use of Boolean algebra in designing a 4-bit parallel adder. Explain it.	K4	CO2
3	18.	Analyze the characteristics and performance of different levels in the memory hierarchy.	K4	CO3
4	19.	Explore the working of cache memory with reference to hit ratio, mapping techniques, and initialization policies.	K4	CO4
5	20.	Evaluate processor organization with focus on register organization and control signals.	K4	CO5