

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MCA DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch – COMPUTER APPLICATION

MAJOR ELECTIVE COURSE – II : BLOCK CHAIN TECHNOLOGY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the difference between traditional financial arrangements and cryptocurrency systems. How does the concept of trust differ in these systems? (OR)	K2	CO1
	11.b.	Describe how digital signatures ensure data integrity and non-repudiation. Support your answer with an example scenario.		
2	12.a.	Given a scenario where a centralized payment system is frequently failing due to a single point of failure, apply the concept of decentralization to redesign the system using blockchain principles. (OR)	K3	CO2
	12.b.	A company wants to secure its private key such that no single employee can access it fully. Apply key-splitting techniques to design a secure access mechanism.		
3	13.a.	Apply your understanding of Bitcoin transactions to construct a sample transaction that includes two inputs and one output. Explain how the inputs are verified using previous UTXOs and how the transaction is validated in the Bitcoin network. (OR)	K3	CO3
	13.b.	Compare how CPU, GPU, and ASIC miners would perform on a specific Bitcoin mining task (e.g., solving a hash). Apply hash rate and efficiency metrics to demonstrate why ASICs are preferred in modern mining operations.		
4	14.a.	Analyze how Bitcoin's pseudonymity differs from true anonymity. What risks does this pose to user privacy? (OR)	K4	CO4
	14.b.	Examine how governments around the world have responded to Bitcoin. What regulatory trends have emerged, and how do they affect adoption?		
5	15.a.	Examine the relationship between Bitcoin and altcoins in terms of market dynamics and technical compatibility. (OR)	K4	CO5
	15.b.	Compare any two altcoins in terms of their consensus mechanisms, use cases, and improvements over Bitcoin.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

(3 × 10 = 30)

Module No.	Question No.	Question	K Level	CO
1	16	Evaluate the role of hash pointers and linked data structures in ensuring immutability within a blockchain. How do these concepts support tamper-evidence and traceability?	K4	CO1
2	17	Compare and analyze the architectural differences between centralized, decentralized, and distributed systems.	K4	CO2
3	18	Analyze the structure of a Bitcoin transaction by breaking it down into its core components (inputs, outputs, and scripts). Explain the function of each component and how they interrelate to ensure transaction validity within the blockchain.	K4	CO3
4	19	Evaluate the effectiveness of mixing protocols in enhancing transaction privacy. What trade-offs exist between privacy, trust, and usability?	K5	CO4
5	20	Critically analyze the mechanism and benefits of merge mining. How does it impact the security and decentralization of both parent and auxiliary chains?	K4	CO5