

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – BIOTECHNOLOGY

CELL AND MOLECULAR BIOLOGY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	The interaction of a cell with the extracellular matrix, mediated by multi-protein adhesion structures is ____. a) Cell-matrix adhesion b) Cell-cell interaction c) Cell-cell adhesion d) Cell-cell junction	K1	CO1
	2	A multistep process that starts in the nucleolus and culminates in the formation of functional ribosomes in the cell ____. a) Ribosomal RNAs b) Ribosome biogenesis c) Protein biogenesis d) Peptide biogenesis	K2	CO1
2	3	The formation of Z-DNA occurs with the methylation of ____. a) Deoxycytosine residues b) Deoxyguanosine residues c) Deoxythymidine residues d) Deoxyadenosine residues	K1	CO1
	4	The structure has a complex outer surface; depending on the perspective, it appears as a wedge or as a flat disk a) Nucleoid b) Nucleus c) Nucleolus d) Nucleosome	K2	CO1
3	5	The group of cellular enzymes that remove RNA primers include the proteins FEN1 and ____. a) RNase H b) Replication protein A c) Cdc6 d) Cdt1	K1	CO1
	6	Repair mechanism using homologous sequences after 5'-3' degradation occurs by ____. a) Conjunction b) Adherence c) Resection d) Coupling	K2	CO1
4	7	Cells can be characterized by the spectrum of mRNA molecules present within ____. a) Ribosome b) Transcriptome c) Metabolome d) Genome	K1	CO1
	8	A short tail of amino acids that directs a protein to a specific cellular compartment is termed as ____. a) N-terminus sequence b) Protein sequence c) Aminoacid sequence d) Signal sequence	K2	CO1
5	9	The mRNA elements that bind metabolites or metal ions as ligands and regulate mRNA expression are ____. a) RNA domain b) Riboswitches c) Aptamer Domain d) Ribosomes	K1	CO1
	10	In the bound state, the protein that cleaves the m-RNA, either destroying other gene silencing protein is called ____. a) Argonaute protein b) Dicer protein c) RNA- binding protein d) RNA helicase	K2	CO1

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Discuss the different types of membrane proteins and their functions. (OR)	K2	CO1
	11.b.	Interpret the mechanism of export and sorting of proteins to Mitochondria.		
2	12.a.	Predict the structure and functions of B and Z forms of DNA. (OR)	K3	CO2
	12.b.	Describe the importance of Mitochondrial DNA.		
3	13.a.	Differentiate between Homologous and Non-Homologous Recombination in Prokaryotes and Eukaryotes. (OR)	K4	CO3
	13.b.	Explore the types of Transposons and its importance in mutagenesis.		
4	14.a.	Determine the effects of activators and repressors in Transcription. (OR)	K5	CO4
	14.b.	Summarize the role of RNA polymerases, enhancers and activators in Transcription.		
5	15.a.	Organize the specific regulatory elements and genes that control the transcription of the Galactose and Arabinose operon. (OR)	K6	CO5
	15.b.	Specify the role of Nucleosome remodeling and post transcriptional modification in Eukaryotes.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Elaborate the function of Ribosomes in both prokaryotic and eukaryotic cells.	K2	CO1
2	17	Illustrate the basic structure of the DNA molecule as proposed by Watson and Crick.	K3	CO2
3	18	Examine the key enzymes and proteins involved in different types of DNA repair mechanism.	K4	CO3
4	19	Interpret the sequence of mechanism that occurs in translation and protein synthesis.	K5	CO4
5	20	Explain the regulatory mechanism of gene expression in Eukaryotes.	K6	CO5