TOTAL PAGES: 2 22SSP103N

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc (SS) DEGREE EXAMINATION MAY 2025

(First Semester)

Branch - SOFTWARE SYSTEMS (Five Years Integrated)

CALCULUS AND ITS APPLICATIONS

Time: Three Hours

2009-1-11

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Question No.	Question	K Level	со
1	Given $sin^2\theta = \frac{3}{4}$, then the angle θ is $(a)^{\frac{\pi}{2}} \qquad (b)^{\frac{\pi}{2}} \qquad (c)^{\frac{\pi}{4}} \qquad (d)^{\frac{\pi}{6}}$. K1	CO1
2	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$ Given f is continuous at c and g is continuous at f(c), ten $g \circ f$ is continuous at (a) c (b) f(c) (c) g(c) (d) f(g(c))	K2	CO1
3	$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ is	K1	CO2
4	$(a) e^{x}$ $(b) e^{-x}$ $(c) e^{nx}$ $(d) e^{-nx}$ $\sum_{n=0}^{\infty} \frac{4}{2^{n}} is$ $(a) 2$ $(b) 4$ $(c) 8$ $(d) 16$	K2	CO2
5	(a) 2 (b) 4 (c) 8 (d) 16 Given $f(x, y, z) = \frac{x-y}{y^2+z^2}$, then $f(0, -1/3, 0)$ is (a) 0 (b)1 (c) 1/3 (d) 3	K1	соз
6	(a) 0 (b)1 (c) $1/3$ (d) 3 Given $f(x,y) = x \cos y + y e^x$, then $\frac{\partial^2 f}{\partial x \partial y}$ is (a) $y e^x$ (b) $-x \cos y$ (c) $-\sin y + e^x$ (d) none of these	K2	соз
7	(c) $-\sin y + e^x$ (d) none of these Given $y' = 1 + y^2$ (a) $y = \sin(x + c)$ (b) $y = \cos(x + c)$ (c) $y = \tan(x + c)$ (d) $y = \cot(x + c)$ Given $y' = -2xy$, $y(0) = 1.8$	K1	CO4
8	Given $y' = -2xy$, $y(0) = 1.8$ (a) $y = ce^{-x^2}$ (b) $y = ce^{-x^4}$ (c) $y = cx^2$ (d) $y = cx^4$	К2	CO4
9	The period for $\cos 2x$ is (a) π (b) $\frac{\pi}{2}$ (c) 2π (d) none of these	K1	CO5
10	Given f(x) is an odd function with period 2π , then (a) $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx$ (b) $f(x) = \sum_{n=1}^{\infty} a_n \cos nx$ (c) $f(x) = a_0 + \sum_{n=1}^{\infty} b_n \cos nx$ (d) $f(x) = \sum_{n=1}^{\infty} b_n \cos nx$	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Question No.	Question	K Level	со
11.a.	Given $f(x) = 3x + 4$, $g(x) = 2x - 1$ and $h(x) = x^2$. Then find (i) $(f \circ g)(x)$ (ii) $(g \circ f)(x)$ (iii) $(f \circ f)(x)$ (iv) $(g \circ g)(x)$ (v) $(f \circ g \circ h)(x)$ (OR)	K1	CO1
11.b.	Find the value of (i) $\lim_{x \to c} (x^3 + 4x^2 - 3)$ (ii) $\lim_{x \to c} (\frac{x^4 + x^2 - 1}{x^2 + 5})$ (iii) $\lim_{x \to -2} \sqrt{4x^2 - 3}$	Cont	

Cont...

12.a.	Investigate the convergent of the following series (i) $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$ (ii) $\sum_{n=1}^{\infty} \frac{4^n n! \ n!}{(2n)!}$		
· · · · · · · · · · · · · · · · · · ·	(OR)	K2	CO2
12.b.	Find the Taylor series and Taylor polynomial generated by $f(x) = \cos x$ at $x = 0$		
13.a.	Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ is continous at every point except the origin.		CO3
•	(OR)		
	If $f(x,y) = \frac{2y}{y+\cos x}$, then find f_x and f_y as functions. Given resistors of	K2	
	R_1 , R_2 and R_3 ohms are connected in parallelto make an R - ohms		
13.b.	resisitor, the value of R can be found from the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$.		
	Find the value of $\frac{\partial R}{\partial R_2}$ when R_1 =30, $R_2=45$ and $R_3=90$ ohms.		
14.a.	Test the exactness of $cos(x + y) dx + (3y^2 + 2y + cos(x + y)) dy = 0.$ If exact solve.	va.	201
	(OR)	КЗ	CO4
14.b.	Solve the Bernoulli equation $y' = Ay - By^2$		
 	Find the Fourier coefficients of the periodic function		CO5
	$f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases} \text{ and } f(x+2\pi) = f(x). \text{ Functions of this kind}$		
15.a.	occur as external forces acting on mechanical systems, electromotive		
	forces in electric circuits, etc. (The value of at a single point does not	К3	
	affect the integral; hence we can leave undefined at and .)		
·	(OR)		
	Find the Fourier series of the function.		
15.b.	$ \begin{cases} 0 & \text{if } -2 < x < -1 \\ b & \text{if } 1 < x < 1 - 2 \le x \le 1 \end{cases} $		
	$f(x) = \begin{cases} 0 & if -2 < x < -1 \\ k & if -1 < x < 1 \\ 0 & if 1 < x < 2 \end{cases}$		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	со
16	Prove that $\lim_{ heta o 0} \frac{\sin heta}{ heta} = 1$	K2	CO1
17	Given $\sum a_n$ be a series with positive terms and $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$, then prove that (i) the series converges if $\rho<1$ (ii) the series diverges if $\rho>1$ or ρ is infinite.) (iii) the test is in conclusive if $\rho=1$	K2	CO2
18	Find the point $P(x, y, z)$ on the plane $2x + y - z - 5 = 0$ that is closest to the origin.	К2	CO3
19	Suppose that in winter daytime temperature in a certain ofice building in maintained at 70°F. The heating in shut off at 10. P. M. and turned on again at 6 A. M. On a certain day the temperature inside the building at 2 A.M. was found to be 65°F. The outside temperature was 50°F at 10 P. M. and had dropped to 40°F by 6 A. M. What was the temperature inside the building when the heat was turned on at 6 A. M?	КЗ	CO4
20	Find the two half - range expansions of the function $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$	КЗ	CO5