PSG COLLEGE OF ARTS & SCIENCE

- (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

Branch - PHYSICS

PROBLEMS IN CORE PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	Question		CO
No.	No.	Q.100.1101	K Level	
1	1	A particle in a linear potential (L \rightarrow H), whose mass m moves under the potential V=-Fx. The Lagrangian is $L=\frac{1}{2}m\dot{x}^2+Fx$. Find its Hamiltonian. (a) $H=\frac{p}{2m}+Fx$ (b) $H=\frac{p^2}{2m}+Fx$	K1	CO1
	2	(a) $H = \frac{p}{2m} + Fx$ (b) $H = \frac{p^2}{2m} + Fx$ (c) $H = \frac{p}{2m} - Fx$ (d) $H = \frac{p^2}{2m} - Fx$ Condition for a system to be solenoidal (a) $\nabla \times F = \infty$ (b) $\nabla \times F = 1$ (c) $\nabla \cdot F = \infty$ (d) $\nabla \cdot F = 0$	K2	COI
2	3	Find the Eigen value of the matrix $\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$ (a) $e^{i\theta}$ (b) $e^{-i\theta}$ (c) $e^{\pm i\theta}$ (d) e^{θ}	K1	CO2
	4	If the eigenvalues of A of order 3×3 are 2.3 and 1, then find the eigenvalues of adjoint of A. (a) (3,2,6) (b) (3,2,1) (c) (3,2,3) (d) (6,2,6)	K2	CO2
3	5	Energy of linear harmonic oscillator in its 3 rd state is 0.1 eV. Find its frequency of vibration. (a) 5.1×10 ¹² Hz (b) 6.9×10 ¹² Hz (c) 6.8×10 ¹³ Hz (d) 5.9×10 ¹³ Hz	K 1	CO3
	6	Which of the following voltage applied in an electron microscope can produce a electron wavelength of 0.50? (a)502.4 V (b) 600V (c) 602.4 V (d) 1 KV	K2	CO3
4	7	Calculate the entropy change for 1.00 mol of an ideal gas expanding isothermally from a volume of 24.4 L to 48.8 L. (a) 5.76J/K (b) 6.75 J/K (c) 7.65 J/K (d) 7.765 J/K	K1	CO4
	8	A refrigerator operates between 273 K and 303 K. If it removes 500 J of heat from the cold region, Calculate the least work required. (a) 60.24 J (b) 84.63 J (c) 56.45J (d) 54.95J	K2	CO4
5	9	Identify the velocity of electron in 3 rd orbit of hydrogen. (a) 8.892×10 ⁵ m/s (b) 7.338×10 ⁵ m/s (c) 9.919×10 ⁶ m/s (d) 4.462×10 ⁶ m/s	K1	CO5
	10	In Geiger Muller experiment on α-particle experiment from gold foil. The K.E of α-particle was 7.68 MeV. Calculate the distance of closest approach of α-particle. (a) 3.26×10 ⁻¹⁵ m (b) 3.96×10 ⁻¹⁴ m (c) 2.96×10 ⁻¹⁴ m (d) 4.162×10 ¹⁵ m	K2	CO5

SECTION - B (35 Marks) Answer ALL questions

74 7 7		ALL questions carry EQUAL Marks $(5 \times 7 = 1)$	35)	
Module No.	Question No.	Question	K	CO
1	11.a.	A simple pendulum of mass m and length l swings under the influence of gravity. The goal is to determine the equation of motion.	Level	
		(OR)	'	1
	11.b.	A double pendulum consists of two masses ml and $m2$ each attached by massless rods of lengths $l1$ and $l2$, respectively. The first pendulum swings with $\theta 1$ and the second attached to its end swings with $\theta 2$. Find its Lagrangian.	K2	CO1
2	12.a.	Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$		
ļ		(OR)		
	12.b.	Consider two identical bosons in 1D well. What is symmetry of wavefunction and how does it affect possible wavefunction?	K2	CO2
3	13.a.	A particle of mass m is in 1D box, find the energy ratio $\Delta En/E_n$.		
	(OR)			ˈ
	13.b.	Electrons are accelerated through a film of graphite with potential difference of 40 V. The spacing between graphite atoms is 2.1×10 ⁻¹⁰ . Calculate the angle of the first minimum of diffraction pattern.	K3	CO3
4	14.a.	An ideal gas at pressure P is adiabatically compressed. Show that its density becomes 'n' times the initial value. The final pressure of the gas will be	·	
		(OR)		
	14.b.	There are 10 identical particles each of mass m to be accommodated in a cubical box of side L. what is the lowest energy of the system, if the particles obey (i) B.E (ii) F.D statistics.	K4	CO4
5	15.a.	According to Bohr's theory, how many revolutions will an electron make in the 1 st excited state of hydrogen if the lifetime in that state is 10 ⁻⁸ s.	-	
		(OR)	K5	CO5
	15.b.	The spin parity assignments for the ground and first excited state of isotope $^{57}_{28}Ni$, in the single particle shell model, are	KJ	

SECTION -C (30 Marks) Answer ANY THREE questions

		ALL questions carry EQUAL Marks (3×10^{-5})) = 30)	
Module No.	Question No.	Question	K Level	СО
1	16	A dynamical system has the Lagrangian $L=\dot{q}_1^2+\frac{\dot{q}_{21}^2}{a+bq_1^2}+K_1q_1^2+K_2\dot{q}_1\dot{q}_2$, where a, b, K_1 , K_2 are constants. Find the equations of motion in Hamiltonian formalism.	K4	CO1
2	17	Diagnolize (i) $\begin{bmatrix} 4/3 & \frac{\sqrt{2}}{3} \\ \frac{\sqrt{2}}{3} & 5/3 \end{bmatrix}$ (ii) $\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	K5	CO2
3	18	Find the expectation values of energy when the state of harmonic oscillator is $\psi(x,t) = \frac{1}{\sqrt{2}} [\psi_0(x,t) + +\psi_1(x,t)]$, where ψ_0 , ψ_1 are the wavefunctions of ground and first excited states.	K4	CO3
4	19	The boiling point of a liquid P_0 is T_0 . Its molar latent heat of vapourization is L and molar volume of liquid phase is negligible as compared to vapour phase. The vapour phase obeys perfect gas equation. Find the boiling point T at temperature at pressure P.	K5	CO4
5	20	Atomic lithium concentration $n = 3.6 \times 10^{16}/cm^3$ is at a temperature $T = 1500$. In this case the power emitted at the resonant line whose wavelength $\lambda = 671$ nm. $(2p \rightarrow 2s)$ per unit volume of gas is equal to $P=0.30$ W/cm ³ . Find the mean lifetime of Li atoms in their resonace excitation state.	K5	CO4