TOTAL PAGES: 2 22PHP209N

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - PHYSICS

GROUP THEORY AND MOLECULAR SPECTROSCOPY

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	СО
1	1	Which of the following species possesses both C ₃ and C ₂ axes? (a) NH ₃ (b) [H ₃ O] ⁺ (c) SO ₃ (d) PCl ₃	K1	CO1
	2	The number of classes for a C _{2V} point group is (a) 4 (b) 3 (c) 5 (d) 1	K2	CO1
2	3	The direct product of any one dimensional irreducible representation gives (a) One dimensional irreducible representation (b) Totally symmetric irreducible representation (c) Linear combination of irreducible representation (d) Multidimensional irreducible representation	K1	CO2
	4	The letter g is attached to the Mullikan symbol based on (a) The character with respect to σ_h (b) The character with respect to inversion operation (c) The character with respect to identity operation (d) The character with respect to C_2 axis	K2	CO2
	5	The molecule which is IR inactive but Raman active is: (a) HCl (b) SO ₂ (c) N ₂ (d) H ₂ O	K1	CO3
3	6	The fingerprint region in the IR spectrum is (a) 666-4000 cm ⁻¹ (b) 666-1400 cm ⁻¹ (c) 1400-4000 cm ⁻¹ (d) 4000-400 cm ⁻¹	K2	CO3
4	7	The source of UV radiation used in UV-Visible spectrophotometer is (a) Xenon vapour lamp (b) Hydrogen vapour lamp (c) Halogen vapour lamp (d) Sodium vapour lamp	K1	CO4
	8	In the UV spectrum of cyclohexanone, the absorption at $\lambda_{max} = 215$ nm is due to the transition (a) $\sigma \rightarrow \sigma^*$ (b) $\sigma \rightarrow n$ (c) $\pi \rightarrow n$ (d) $\pi \rightarrow \pi^*$	К2	CO4
5	9	Which is used as a standard reference in ¹ H-NMR spectroscopy? (a) DPPH (b) KBr (c) CDCl ₃ (d) TMS	K1	CO5
	10	The signal(s) for a compound like X-CH ₂ -CH ₂ -Y will be: (a) One triplet (b) One singlet (c) Two triplets (d) Two singlets	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Derive the group multiplication table of the symmetry operations of ammonia molecule.	K4	
		(OR)		CO1
	11.b.	Prove that diagrammatically H ₂ O molecule is abelian whereas NH ₃ molecule is non-abelian.		

2	12.a.	Assess the properties of irreducible representations using great orthogonality theorem.		
		(OR)		CO2
	12.b.	Determine the symmetries of normal modes of vibrations of POCl ₃ molecule.		
	13.a.	 (i) Distinguish between Rayleigh scattering, Stokes lines and anti-Stokes lines. (3) (ii) How would you distinguish the following pairs of compounds with the help of IR spectrum? (4) 1. CH₃CH₂OH and CH₃-O-CH₃ 2. CH₃CH₂CHO and CH₃-CO-CH₃ 		
3	(OR)		K4	CO3
	13.b.	 (i) The reduced mass of a HCl is 1.626 x 10⁻²⁷ kg and its vibrational frequency is 2890cm⁻¹. Calculate the force constant. (3) (ii) An organic compound with molecular mass C₈H₁₈ shows the following characteristic absorption bands: (ii) 2925cm⁻¹ (st) (ii) 1465 cm⁻¹ (iii) 1380 cm⁻¹ (iv)720cm⁻¹. Determine the structure of the compound. (4) 		
	14.a.	Predict the various electronic transitions possible in the following compounds: (7x1=7) (i) CH ₄ (ii) CH ₃ Cl (iii) HCHO (iv) Cl ₂ (v) CH ₃ OH (iv) CH ₂ =CH ₂ (vii) CH ₃ -CO-CH ₃		
4	(OR)		K6	CO4
,	14.b.	 (i) Predict the λ_{max} values of 2,4-Hexadiene. (ii) Define the term 'chromophore'. How will you detect the presence of carbonyl group in aldehydes and ketones using UV-Visible spectroscopy? 		
	15.a.	(i) ¹³ C is NMR active while ¹² C is not. Justify this statement. (3) (ii) Compare first order and non- first order spectra in NMR. (4)		
5	(OR)		K5	COS
J	15.b.	 (i) Coupling between bonded ¹³C's not a factor in ¹³C-NMR spectroscopy. Validate this statement.(3) (i) Assess the effect of quadrupole nuclei on relaxation mechanism. (4) 	<i>M</i> 3	

SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Derive the matrix representation for rotation and reflection operations.	K4	CO1
2	17	Construct a character table for C_{2v} point group and also find the symmetries of normal modes of vibrations of water molecule.	K6	CO2
3	18	Deduct the instrumentation of Raman spectroscopy.	K5	CO3
4	19	 (i) Evaluate the effect of solvent polarity on K and R-bands. (5) (ii) State Beer-Lambert's law. 2.5 x 10⁻⁵ M solution of a substance in a 1 cm length cell at λ_{max} 245 nm has absorbance 1.17, Calculate ε_{max} for this transition. (5) 	K.5	CO4
5	20	 (i) Aromatic protons are more deshielded than ethylenic protons, although both the types of protons are attached to sp² hybridized carbon atom. Analyze this observation. (5) (ii) Examine the scalar spin-spin coupling mechanism of acidified ethanol. (5) 	K4	CO5