# PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

### MSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

#### Branch - PHYSICS

### APPLIED THERMODYNAMICS AND STATISTICAL MECHANICS

Time: Three Hours

Maximum: 75 Marks

#### SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$ 

| Module | Question | (10                                                                                                                                                                                                 | <del></del> | <del></del> |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| No.    | No.      | Question                                                                                                                                                                                            | K<br>Level  | CO          |
| 1      | 1        | Out of the following, the physical quantity that relates with first law of thermodynamics is a) temperature b) pressure c) energy d) number of moles                                                | K1          | CO1         |
|        | 2        | The efficiency of Carnot engine working between steam point and ice point is: a) 1 b) 0 c) 26.81% d) 16.81%                                                                                         | K2          | CO2         |
| 2      | 3        | The total no of macrostates for n particles is:<br>a) $n-1$ b) $n$ c) $n+1$ d) $1/n$                                                                                                                | K1          | CO1         |
|        | 4        | Which of the following variables remains constant in canonical ensembles?  a) number of microstate b) volume c) potential energy d) temperature                                                     | K2          | CO2         |
| 3      | 5        | According to which statistics, the energy at absolute zero cannot be zero  a) M-B statistics b) B-E statistics c) F-D statistics d) none of them                                                    | K1          | CO1         |
|        | 6        | The total translational energy of n diatomic molecules isa) nKT b) 3nKT c) 2nKT d) 1.5nKT                                                                                                           | K2          | CO2         |
| 4 .    | 7        | What happens to the internal energy of a monoatomic ideal gas when it is heated at constant volume?  a) remains the same b) decreases c) increases d) fluctuates                                    | K1          | CO1         |
|        | 8        | The specific heat capacity of a diatomic gas at constant pressure is a).5/2 b) 5R/2 c) 7R/2 d) R                                                                                                    | K2          | CO1         |
| 5      | 9        | Einstein's theory of specific heat  a) accepts different frequencies of molecular vibrations b) accepts same frequency of all molecular vibrations c) rejects molecular vibrations d) none of these | K1          | CO1         |
|        | 10       | What is the term used to describe the state of matter where negative temperatures occur?  a) absolute zero b) Bose-Einstein condensate c) Fermi gas d) superfluid                                   | K2          | CO2         |

#### SECTION - B (35 Marks)

#### Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$ 

| Module<br>No. | Question<br>No. | Question                                                                        | K<br>Level | СО  |
|---------------|-----------------|---------------------------------------------------------------------------------|------------|-----|
| 1             | 11.a.           | State and explain zeroth law of thermodynamics. What is its importance?         |            |     |
|               | (OR)            |                                                                                 |            | CO3 |
|               | 11.b.           | Define the following (i) Helmholtz free energy and (ii) Gibb's paradox.         |            |     |
| 2             | 12.a.           | Define and explain the terms macro state and micro state with the example.      |            | CO3 |
|               |                 | (OR)                                                                            | K3         |     |
|               | 12.b.           | Differentiate between micro canonical, canonical and grand canonical ensembles. |            |     |
| 3             | 13.a.           | What is BE statistics? What are the basic postulates used?                      |            |     |
|               | (OR)            |                                                                                 | K3         | CO3 |
|               | 13.b.           | Discuss about Bose- Einstein condensation.                                      |            |     |
| 4             | 14.a.           | Show that the ratio of specific heats of a diatomic gas is 1.40.                |            |     |
|               |                 | (OR)                                                                            |            | CO4 |
|               | 14.b.           | Write a note on Quantized linear oscillator.                                    |            |     |
| 5             | 15.a.           | Explain briefly about Pauli's theory of paramagnetism.                          |            | CO4 |
|               |                 | (OR)                                                                            | K4         |     |
|               | 15.b.           | Write a note on the concept of negative temperature.                            |            |     |

## SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$ 

| Module<br>No. | Question<br>No. | Question                                                                                                    | K<br>Level | СО  |
|---------------|-----------------|-------------------------------------------------------------------------------------------------------------|------------|-----|
| 1             | 16              | Derive the Maxwell's thermodynamic relations.                                                               | K4         | CO3 |
| 2             | 17              | State and explain Liouville's theorem.                                                                      | K5         | CO4 |
| 3             | 18              | Derive an expression for the most probable distribution of the particles of a system obeying BE statistics. | K6         | CO5 |
| 4             | 19              | Give the experimental verification of Maxwell's-Boltzmann's law of distribution of molecular speeds.        | K6         | CO5 |
| 5             | 20              | Describe the Einstein's theory of the specific heat of a solid.                                             | K5         | CO4 |