PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025 (First Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

		ALL questions carry EQUAL marks	(10 × 1	
Module No	Question No	Question	K Level	СО
110	1	If E(X+c)=10 and E(X-c)=6 then the value of c is	K1	CO1
1	2	The value of $\phi(-t) = \underline{\hspace{1cm}}$ (a) $\phi(t)$ (b) $-\frac{1}{\phi(t)}$ (c) $\overline{\phi(t)}$ (d) $-\overline{\phi(t)}$	K2	CO1
2	3	Mode of the binomial distribution $B(7,\frac{1}{2})$ is	K1	CO2
2	4	If X is a poisson variable with $P(X=0)=P(X=1)=c$ then the value of c is (a) e (b) $\log e$ (c) $\log \left(\frac{1}{e}\right)$ (d) $\frac{1}{e}$	K2	CO2
3	5	The random variable X_n has an asymptotically normal distribution with mean is (a) npq (b) np (c) \sqrt{npq} (d) \sqrt{np}	K1	CO3
	6	The sequence of random variables $\{Z_n\} = \{X_n - X\}$ is stochastically convergent to (a) 1 (b) $-\infty$ (c) ∞ (d) 0	K2	CO3
4	7	If j is transient, then as $n \to \infty$, $p_{jj}^{(n)} \to $	K1	CO4
	8	If the process is real and $m = 0$, $\sigma^2 = 1$, then $R(\tau)$ is called function. (a) Correlation (b) Regression (c) Moment (d) Stationary	K2	CO4
5	9	The process of making estimates about the population parameter from a sample is called	K1	CO5
	10	Infer the value of f-statistic having a cumulative probability of 0.95. (a) 0.55 (b) 0.5 (c) 0.05 (d) 0.05	K2	CO5

SECTION - B (35 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module	Question	ALL questions carry EQUAL Marks $(5 \times 7 = 35)$	K	~~
No	No	Question	Level	CO
1	11.a.	Compute the variance of the binomial distribution.	K2	CO1
	ļ <u></u>	(OR)		
	11.b.	Show that the characteristic function of the sum of an arbitrary finite number of independent random variables equals the product of their characteristic functions.		
2	12.a.	The random variable X has the beta distribution with $p = q = 2$; hence its density $f(y)$ has the form $f(y) = \begin{cases} 0 & \text{for } y \le \& y \ge 1, \\ \frac{\Gamma(4)}{\Gamma(2)\Gamma(2)}y(1-y) = 6y(1-y) & \text{for } 0 < y < 1 \end{cases}$ what is the probability that X is not greater than 0.2? (OR)	K2	CO2
	12.b.	Obtain moments of the gamma distribution.		
3	13.a.	A box contains a collection of IBM cards corresponding to the workers from some branch of industry. Of the workers 20% are minors & 80% adults. We select one IBM card in a random way & mark the age given on this card. Before choosing the next card, we return the first one to the box, so that the probability of selecting the card corresponding to a minor remains 0.2 we observe n cards in this manner. What value should n have in order that the probability will be 0.95 that the frequency of cards corresponding to minors lies between 0.18 & 0.22?	К3	CO3
	13.b.	Apply Bernoulli's Law of large number Examine that - The sequence of random variables $\{X_n\}$ given by $P\left(Y_n = \frac{r}{n}\right) = \binom{n}{r} p^r (1-p)^{n-r} \& X_n = Y_n - p$ is stochastically convergent to 0, that is, for any $\varepsilon > 0$ we have $\lim_{n \to \infty} P(X_n > \varepsilon) = 0$.		,
4	14.a.	Analyze the statement "the solutions $V_m(t)$ of the system $V_0'(t) = -\lambda_l V_0(t), V_m'(t) = -\lambda_{l+m} V_m(t) + \lambda_{l+m-1} V_{m-1}(t) (m = 1, 2,)$ with the initial conditions $V_m(0) = \begin{cases} 1 & \text{for } m = 0, \\ 0 & \text{for } m \neq 0. \end{cases}$ satisfy the relation $\sum_{m=0}^{\infty} V_m(t) = 1 \text{ iff } \sum_{m=0}^{\infty} \frac{1}{\lambda_{l+m}} = \infty$ ".	K4	CO4
	14.b.	Analyze the statement "A process stationary in the wide sense is continuous iff its covariance function $R(\tau)$ is continuous at zero".		
5	15.a.	The random variables $X_k (k = 1,, 8)$ are independent & have the same normal distribution $N(0; 2)$. We consider the statistic $\chi^2 = \sum_{k=1}^8 X_k^2$. Here the random variable χ^2 has eight degrees of freedom. The expected value & the standard deviation of this random variable are, respectively $m_1 = 32, \sqrt{\mu_2} = 16$. Compute the probability that χ^2 will exceed or equal 40.	K5	CO5
	15.b.	Prove that, the sequence $\{F_n(t)\}\$ of distribution functions of student's t with n degrees of freedom satisfies for every t the		
	,	relation $\lim_{n\to\infty} F_n(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-t^2/2} dt$.		<u></u>

SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No	Question No	Question	K Level	со
1	16	Find the density function of the random variable X, whose characteristic function is $\phi_1(t) = \begin{cases} 1 - t & for & t \le 1, \\ 0 & for & t > 1 \end{cases}$	K1	CO1
2	17	Let the random variable x_n have a binomial distribution defined by the formula $P(x_n = r) = \frac{n!}{r!(n-r)!}p^r(1-p)^{n-r}$, where r takes on the values $0,1,2,,n$, if for $n=1,2,$ the relation $p=\frac{\lambda}{n}$ holds where $\lambda>0$ is a constant, then show that $\lim_{n\to\infty} P(X_n=r) = \frac{\lambda^r}{r!}e^{-\lambda}$.	K2	CO2
3	18	State and prove The Lindberg-Levy Theorem.	K3	соз
4	19	Analyze the statement "A stochastic process $\{X_t, 0 \le t < \infty\}$, where X_t is the number of signals in the interval $[0,t)$, satisfying conditions I to III & the equality $P(X_0 = 0) = 1$, is a homogeneous Poisson process".	K4	CO4
5	20	The random variables $X_k(k=1,,16)$ are independent & have the same density $f(x) = \frac{1}{2\sqrt{2\pi}}exp\left\{-\frac{1}{2}\cdot\frac{(x-1)^2}{4}\right]$. Determine the distribution of (i) $\bar{x} = \frac{1}{16}\sum_{k=1}^{16}X_k$. (ii) $P(0 \le \bar{X} \le 2)$ (iii) $P(0 \le X \le 2)$	K5	CO5

Z-Z-Z END

·)