PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

Branch- MATHEMATICS

CONTROL THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module	Question	ALL questions carry EQUAL marks (10 ×	1 = 10	
No.	No.	Question	K Level	СО
1	1	$(e^{A})^{-1} =$ (a) e^{A} (b) e^{-A} (c) e^{1} (d) e^{-1}	Kl	CO1
	2	If the system is observable at every $t \in I$ it is called (a) convergent (b) partially observable (c) divergent (d) completely obervable	K2	COI
2	3	The linear control system $\dot{x} = A(t)x + B(t)u$ is controllable on $[0,T]$ if for every pair of vectors $x_0, x_1 \in \mathbb{R}^n$, there is a control $u \in L_m^2[0,T]$ such that the solution $x(t)$ of $\dot{x} = A(t)x + B(t)u$ satisfies (a) $x(1) = x_0$ and $x(T) = x_1$ (b) $x(0) = 0$ and $x(T) = x_1$ (c) $x(0) = x_0$ and $x(T) = x_1$ (d) $x(0) = 0$ and $x(T) = 0$	K1	CO2
	4	completely controllable if for every $x_0, x_1 \in R^n$ there exists a continuous control function $u(t)$ defined on I such that the solution of the above equation satisfies (a) $x(1) = x_0$ and $x(T) = x_1$ (b) $x(0) = 0$ and $x(T) = x_1$ (c) $x(0) = 0$ and $x(T) = 0$ (d) $x(0) = x_0$ and $x(T) = x_1$	K2	CO2
3	5	Eigen values of the matrix $\begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$ are (a) One Positive, one Negative (b) both are positive (c) both are negative (d) both are zero	K1	CO3
	6	The solution of $\phi(t)$ is called if it is not stable. (a) un stable (b) complete stable (c) strong stable (d) uniform stable	K2	CO3
	7	The system $x = Ax + Bu, x \in \mathbb{R}^n, u \in \mathbb{R}^m$ is called an (a) open loop system (b) closed loop system (c) circuit loop system (d) closed circuit loop system	K1	CO4
4	8	The linear time invariant control system $\underline{\dot{x}} = Ax + Bu, x \in \mathbb{R}^n, u \in \mathbb{R}^m$ is stabilizable if there exists an $m \times n$ Matrix K such that $\underline{}$ is stability matrix. (a) $A - BK$ (b) $A + BK$ (c) $AB - K$ (d) $AB + K$	K2	CO4
5	9	In the cost functional equation, $Q(t)$ is matrix (a) an $m \times n$ symmetric positive semidefinite (b) an $n \times n$ symmetric positive semidefinite (c) an $n \times m$ symmetric positive semidefinite (d) an $n \times n$ symmetric positive definite	K1	CO5
	10	$u(t) = G(t)x(t), t \in [0,T]$, where $G(t)$ is an	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

		ALL questions carry EQUAL Marks (5×7)	= 35)	•
Module No.	Question No.	Question	K Level	СО
1	11.a.	Solve the initial value problem $\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x, x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$		-
		(OR)		
	11.b.	Organize: The constant coefficient system $\dot{x} = Ax$, $\dot{y} = Hx$ is observable on an arbitrary interval $[0,T]$ if and only if for some k , $0 < k \le n$ the rank of the observability matrix $rank\begin{bmatrix} H \\ HA \\ \vdots \\ HAk-1 \end{bmatrix} = n$	К3	CO1

22MAP420N

Cont...

			Cont	
2	12.a.	Analyze: The system $\dot{x} = A(t)x + B(t)u$ is controllable on $[0, T]$ if and only if for each vector $x_1 \in \mathbb{R}^n$ there is a control $u \in L^2_m[0, T]$ which steers 0 to x_1 during $[0, T]$.		CO2
	(OR)		┤ *``	002
	12.b.	Analyze: If rank $B = n$ then the system $x = Ax + Bu$ is controllable.	1	
	13.a.	Explain Gronwall's Inequality.		
3	(OR)			
		Explain: Let $X(t)$ be a fundamental matrix of the system $\dot{x}(t) = A(t)x(t)$.	K2	CO3
	13.b.	Assume that there exists a constant $K > 0$ such that $\int_0^t X(t,s) ds \le K, t \ge 0$		
		then there exists a constant $M > 0$ such that $ X(t) \le Me^{-\left(\frac{1}{K}\right)t}$, $t \ge 0$.		
4	- 14.a.	Suppose there are $m \times n$ matrices K_1, K_2 such that $(A + BK_1)$ and $-(A + BK_2)$ are stability matrices. Then examine the system $\dot{x} = Ax + Bu, x \in \mathbb{R}^n, u \in \mathbb{R}^m$ is controllable.	K4	CO4
	14.b.	(OR)		
			Prove that the linear control system $\dot{x} = Ax + Bu$ is stabilizable if and only if after reduction to the form A_2 is a stability matrix.	
	15.a.	If $u(t) = -R^{-1}(t)B^*(t)K(t)x(t)$, then construct that J attains a local minimum.		
		(OR)	1	
ļ		Construct: For the continuous non linear system		
		$\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t,x(t))$ with quadratic performance criteria	K3	CO5
5		$J = \frac{1}{2}x^{*}(T)Fx(T) + \frac{1}{2}\int_{0}^{T} [x^{*}(t)Q(t)x(t) + u^{*}(t)R(t)u(t)]dt \text{ the optimal}$		
	15.b.	control exists if $ f(t,x)-f(t,y) \le a x-y $ where a is positive constant, and is given by $u(x(t),t) = -R^{-1}(t)B^*(t)K(t)x(t) - R^{-1}(t)B^*(t)h(t,x)$ Where $K(t)$ satisfies the Riccati equation and		
		$h(t,x) = -[A^*(t) - K(t)B(t)R^{-1}(t)B^*(t)]h(t,x) - K(t)f(t,x(t))$ $h(T,x) = 0$		

SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Examine: The equation $\dot{x}(t) = f(t,x), x(t_0) = x_0$ has a unique solution defined on $[t_0, t_0 + h], h > 0$ if the function $f(t,x)$ is continuous in the strip $t_0 \le t \le t_0 + h, x < \infty$ and satisfies the Lipschitz condtion. $ f(t,x_1) - f(t,x_2) \le K x_1 - x_2 $ Where $K > 0$ is a constant.	K4	CO1
2	17	Examine: Suppose the system $\dot{x} = A(t)x + B(t)u$ is completely controllable and the continuous function f is bounded locally in u (for $(t, x) \in I \times R^n$) and satisfies the following conditions (i) $\lim_{ u \to \infty} \frac{ f(t,x,u) }{ u } = 0$ uniformly in $(t,x) \in I \times R^n$ (ii) for each $r > 0$ there exists a constant L such that for every $t \in I, x \in R^n$, $ u \le r$ we have $ f(t,x,u) \le L x $ Then the system $\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t,x(t),u(t))$ is controllable.	K4	CO2
3	18	Examine: Let $X(t)$ be a fundamental matrix of $\dot{x}(t) = A(t)x(t)$ such that $\int_0^t X(t,s) ds \le K$, $t \ge 0$ Where $K > 0$ is a constant. Further let $ f(t,x) = \mu x $ with $0 \le \mu \le 1/K$. 'Then the zero solution of $\dot{x}(t) = A(t)x + f(t,x)$ is asymptotically stable.	K4	CO3
4	19	Examine: If the system $\dot{x} = Ax + Bu, x \in \mathbb{R}^n, u \in \mathbb{R}^m$ is controllable, then it is stabilizable.	K4	CO4
5	20	Examine: Given the linear system $\dot{x}(t) = A(t)x(t) + B(t)u(t) \text{and the cost functional} J = \frac{1}{2}x^*(T)Fx(T) \\ + \frac{1}{2}\int_0^T [x^*(t)Q(t)x(t) + u^*(t)R(t)u(t)]dt \text{there exists an optimal control of} \\ \text{the form } u(t) = -R^{-1}(t)B^*(t)K(t)x(t) \text{Where } K(t) \text{ is the solution of the} \\ \text{matrix Riccati equation with } K(T) = F$	K4	CO5