PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch- MATHEMATICS

COMPLEX ANALYSIS

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$ Module No.Question $(10 \times 1 = 10)$ If ad - bc = 1 in a linear transformation $(10 \times 1 = 10)$ $w = \frac{az+b}{cz+d}$, then it said to be $(10 \times 1 = 10)$ $w = \frac{az+b}{cz+d}$, then it said to be $(10 \times 1 = 10)$ $(10 \times 1$

1	1	$w = \frac{az+b}{cz+d}$, then it said to be	K1	CO1
		(a) translation (b) normalized		
		(c) rotation (d) inversion		1
	2	The index of a point with respect to the closed curve γ is denoted by $n(\gamma, a)$. It is given by the formula (a) $2\pi i \int_{\gamma} \frac{dz}{z-a}$ (b) $\frac{2}{\pi i} \int_{\gamma} \frac{dz}{z-a}$ (c) $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ (d) $2\pi a \int_{\gamma} \frac{dz}{z-a}$	K2	CO1
	3	"Given γ is a homologous to zero in Ω and $n(\gamma, z)$ is either 0 or 1 for any point z not on γ . If $f(z)$ and $g(z)$ are analytic in Ω and satisfy the inequality $ f(z) - g(z) < f(z) $ on γ . Then $f(z)$ and $g(z)$ have the same number of zeros enclosed by γ " this is known as (a) Morera's theorem (b) Abel's theorem (c) Rouche's theorem (d) Cauchy's theorem	K1	CO2
2		If u_1 and u_2 are harmonic in a region Ω , then		
	4	(a) $\int_{\gamma} u_1 * du_1 - u_2 * du_2 = 0$ (b) $\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0$ (c) $\int_{\gamma} u_2 * du_2 - u_1 * du_1 = 0$ (d) $\int_{\gamma} u_2 * du_1 - u_1 * du_2 = 0$	K2	CO2
3	5	log(1+z) =	K1	CO3
	6	Every function which is meromorphic in the whole plane is the of two entire function. (a) sum (b) product (c) quotient (d) composition	K2	CO3
4	7	Given $\varphi(t)$ is an analytic arc. If it is regular, then (a) $\varphi(t) = 0$ (b) $\varphi(t) \neq 0$ (c) $\varphi'(t) = 0$ (d) $\varphi'(t) \neq 0$	K1	CO4
	8	Harnack's inequalities valid only for harmonic functions. (a) positive (b) negative (c) both (a) and (b) (d) none of these	K2	CO4
	9	e^z has a period (a) π (b) πi (c) 2π (d) $2\pi i$	K1	CO5
5	10	The equation $\eta_1 \omega_2 - \eta_2 \omega_1 = 2\pi i$ known as (a) Weierstrass relation (b) Legendre relation (c) elliptic relation (d) canonical relation	K2	CO5

(c)elliptic relation

(d) canonical relation

Cont...

SECTION - B (35 Marks) Answer ALL questions

-	-	
ATT amortions	carry EQUAL Marks	$(5 \times 7 = 35)$
ALL questions	Cally BQ OTED TOTAL	

On Question	K Level	СО	
Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.	K3	CO1	
(OR)			
Evaluate (i) $\int \frac{e^z}{z} dz$ on $ z = 1$ (ii) $\int \frac{dz}{z^2 + 1} dz$ on $ z = 2$.			
Apply the method of residue to evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{a+\sin^2 x}$ where $ a > 1$.			
(OR)			
Given $f(z)$ is meromorphic in Ω with the zeros a_j and the	K5	CO2	
poles b_k , then prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_j n(\gamma, a_j) -$			
$\sum_k n(\gamma, b_k)$ for every cycle γ , which is homologous to zero in Ω and does not pass through any of the zeros or poles.			
Explain necessary and sufficient condition for absolute convergence of the product $\prod_{1}^{\infty}(1+a_n)$ is the convergence of the series $\sum_{1}^{\infty} a_n $.	K5	CO3	
(OR)			
Construct the canonical product for $\sin \pi z$.		ļ	
Given f is a topological mapping of a region Ω . If $z(t)$ tends to the boundary of Ω , then prove that $f(z(t))$ tends to the boundary of Ω' .	K5	CO4	
(OR)			
A continuous function $u(z)$ with mean-value property is necessarily harmonic.			
Prove that any two bases of the same module are connected by unimodular transformation.			
(OR)		CO5	
(i) Prove that the sum of the residues of an elliptic function is zero. (ii) Prove that an elliptic function without poles is a constant.			
	(OR)	(i) Prove that the sum of the residues of an elliptic function is zero. (ii) Prove that an elliptic function without poles is a constant. SECTION -C (30 Marks)	

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$					
Module No.	Question No.	Question	K Level	CO	
1	16	Suppose that $\varphi(\xi)$ is a continuous on the arc γ . Then show that the function $F_n(z) = \int \frac{\varphi(\xi) d\xi}{(\xi - z)^n}$ is analytic in each of the regions determined by γ and its derivative $F'_n = nF_{n+1}(z)$.	K3	CO1	
	17	State and prove Schwarz's lemma.	K5	CO2	
3	18	Derive Jensen's formula and Poisson Jensen's formula.	K5	CO3	
4	19	State and prove Reimann mapping theorem.	K5	CO3	
5	20	Construct a basis (ω_1, ω_2) such that ratio $\tau = \frac{\omega_2}{\omega_1}$ satisfies the following conditions: (i) $Im \tau > 0$ (ii) $-\frac{1}{2} < Re \tau \le \frac{1}{2}$ (iii) $ \tau \ge 1$ (iv) $Re \tau \ge 0$ if $ \tau = 1$ and show that the ratio is uniquely determined by these conditions and there is a choice of two four or six corresponding bases.	K5	CO3	

Z-Z-Z END