PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch- MATHEMATICS

TOPOLOGY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$ Module Question CO Question

No.	No.	Question	Level	
1	1	For $X = \{a, b, c, d\}$, which of the following is not a topology on X : (a) $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}$ (b) $\tau = \{\varphi, \{b\}, \{c\}, \{b, c\}, \{c, d\}, \{b, c, d\}, X\}$ (c) $\tau = \{\varphi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{b, c, d\}, X\}$ (d) $\tau = \{\varphi, \{a\}, X\}$	K1	CO1
	2	A subset A of a topological space X is said to be closed if the set X - A is (a) Open (b) Closed (c) Limit point (d) Interior	K2	CO1
2	3	If $f: X \to Y$ and $g: Y \to Z$ are continuous, then the map $g \circ f: X \to Z$ is (a) Open (b) continuous. (c) Limit point (d) Interior	K1	CO2
	4	A metric space is a space X together with a specific metric d that gives the topology of X. (a) Metrizable (b) Standard bounded metric (c) Product topology (d) Euclidean metric	K2	CO2
3	5	A space X isif and only if the only subsets of X that are both open and closed in X are the empty set and X itself. (a) subspace (b) closure (c) Product topology (d) connected	K1	CO3
	6	A finite cartesian product of connected spaces is (a) Connected (b) uniform topology (c) disconnected (d) T-shaped spaces	K2	CO3
4	7	A space X is said to beif every infinite subset of X has a limit point. (a) Limit point compact (b) continuous (c) Limit point (d) Interior	K1	CO4
	8	A subset A of a space X is said to be in X if $\overline{A} = X$. (a) Open (b) Closed (c) dense (d) Interior	K2	CO4
5	9	Every metrizable space is (a) normal (b) Closed (c) dense (d) regular	K1	CO5
	10	Subspace of a regular space is (a) normal (b) Closed (c) dense (d) regular	K2	CO5

Cont...

(我們的話句)為

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	Prove that If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.	К3	CO1
	(OR)			
	11.b.	Prove that Let A be a subset of the topological space X. A' be the set of all limit points of A. Then $\bar{A} = A \cup A'$.	K4	
	12.a.	State and prove Sequence lemma.	K1	
2	ļ = 	(OR)		CO2
3	12.b.	State and prove Pasting lemma.	K6	
<u> </u>	13.a.	State and Prove Intermediate value theorem.	K1	
3		(OR)		CO3
	13.b.	State and Prove Uniform continuity theorem.	K5	
-	14.a.	Prove that Compactness implies limit point compactness, but not conversely.	K4	
4		(OR)		CO4
	14.b.	Prove that A subspace of a Hausdorff space is Hausdorff; a product of Hausdorff spaces is Hausdorff.	K4	
	15.a.	State and pove Tychonoff theorem.	K1	1
5		(OR)		CO5
	15.b.	State and pove Tietze extension theorem.	K1	

SECTION -C (30 Marks) Answer ANY THREE questions

ATT questions carry EQUAL Marks $(3 \times 10 = 30)$

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$							
Module No.	Question No.	Question	K Level	CO			
1	16	Let X be a topological spaces then the following condition are hold (i) ϕ and X are closed (ii) Arbitrary intersection of closed sets are closed (iii) Finite union of closed set are closed	K2	CO1			
2	17	 Let X and Y be topological spaces and let f:X→Y. Then prove that the following are equivalent. (i) f is continuous. (ii) For every subset A of X f (A) ⊂ f (A) (iii) For every closed subset B of Y, the set f⁻¹(B) is closed in X. 	К3	CO2			
3	18	(i) State and prove Lebesgue number lemma. (ii) State and prove Uniform continuity theorem.	K4	соз			
4	19	Let X be a metrizable space. Prove that the following are equivalent: (i) X is compact. (ii) X is limit point compact. (iii) X is sequentially compact.	K6	CO4			
5	20	State and prove the Urysohn lemma.	K5	CO5			