PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Question No.	Question	K Level	CO
1	The two equations $f(x, y, z, p, q) = 0$ and $g(x, y, z, p, q) = 0$ is said to be compatible if a) $[f, g] = 0$ b) $[f, g] \neq 0$ c) $[f, g] = 1$ d) $[f, g] \neq 1$	K1	CO1
2	Which of the following is an charpit's equation? a) $\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{(pf_p + qf_q)} = \frac{dp}{-(f_x + pf_z)} = \frac{dq}{(f_y + qf_z)}$ b) $\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{(pf_p + qf_q)} = \frac{dp}{-(f_x + pf_z)} = \frac{dq}{-(f_y + qf_z)}$ c) $\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{(pf_p + qf_q)} = \frac{dp}{(f_x + pf_z)} = \frac{dq}{(f_y + qf_z)}$ d) $\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{-(pf_p + qf_q)} = \frac{dp}{-(f_x + pf_z)} = \frac{dq}{-(f_y + qf_z)}$	K2	CO1
3	Choose the correct telegraphy equation a) $\frac{\partial^2 \varphi}{\partial x^2} = k \frac{\partial \varphi}{\partial t}$ b) $\frac{\partial^2 \varphi}{\partial x^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ c) $\frac{\partial^2 \varphi}{\partial x^2} = -k \frac{\partial \varphi}{\partial t}$ d) $\frac{\partial^2 \varphi}{\partial x^2} = \frac{-1}{k} \frac{\partial \varphi}{\partial t}$	K1	CO2
4	Canonical form of the equation $z_{xx}+2z_{xy}+z_{yy}=0$ is a) $G_{\eta\eta}=-1$ b) $G_{\eta\eta}=1$ c) $G_{\eta\eta}=0$ d) $G_{\eta\eta}=2$	K2_	CO2
5	The equation $\nabla^2 \psi = 0$ is known as a) Diffusion equation b) Wave equation c) Heat equation d) Laplace equation	K1	CO3
6	In the three dimensional case, the solution of the exterior Dirichlet problem is unique then a) $\psi(x,y,z) < \frac{c}{r}$ b) $ \psi(x,y,z) \le \frac{c}{r}$ c) $ \psi(x,y,z) \ge \frac{c}{r}$ d) $ \psi(x,y,z) \ge \frac{c}{r}$	K2	CO3
7 -	Choose the correct d 'Alembert's solution of the one dimensional wave equation. a) $y = \frac{1}{2} \{ \eta(x+ct) + \eta(x-ct) \} + \frac{1}{2c} \int_{x-ct}^{x+ct} v(\xi) d\xi$ b) $y = \frac{1}{2} \{ \eta(x+ct) - \eta(x-ct) \} + \frac{1}{2c} \int_{x-ct}^{x+ct} v(\xi) d\xi$ c) $y = \frac{1}{2} \{ \eta(x+ct) - \eta(x-ct) \} - \frac{1}{2c} \int_{x-ct}^{x+ct} v(\xi) d\xi$ d) $y = \frac{1}{2} \{ \eta(x+ct) + \eta(x-ct) \} - \frac{1}{2c} \int_{x-ct}^{x+ct} v(\xi) d\xi$	K1	C04
8	Wave equation is one of the classification of a) Eliptic Equation b) Hyperbolic Equation c) Parabolic Equation d) None of the above	K2	CO4
9 .	The one-dimensional diffusion equation is a) $\frac{\partial^2 \theta}{\partial x^2} = k \frac{\partial \theta}{\partial t}$ b) $\frac{\partial^2 \theta}{\partial x^2} = -k \frac{\partial \theta}{\partial t}$ c) $\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{k} \frac{\partial \theta}{\partial t}$ d) $\frac{\partial^2 \theta}{\partial x^2} = \frac{-1}{k} \frac{\partial \theta}{\partial t}$	K1	COS
10	The deterministic form of diffusion equation is $a > 0$ $b > 0$ $c = 0$ d) None of the above	K2 Con	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Question No.	Question	K Level	CO
11.a.	Show that the equation $xp = yq$, $z(xp = yq) = 2xy$ are compatiable and hence solve them.	K2	
<u>-</u> -	(OR)		CO1
11.b.	Find the general integral of the linear partial differential equation $z(xp - yq) = y^2 - x^2$.		
12.a.	If the operator $F(D, D')$ is irreducible. Then prove that the order in which the lineal factors occur is unimportant.		CO2
	(OR)	K3	
12.b.	Find a particular integral of the equation $(D^{2} D')z = 2y - x^{2}$.		
13.a.	Prove that $\nabla^2 \psi = 0$.		
	(OR)		CO3
13.b.	Prove that the solution of a certain Neumann Problem can differ from one another by a constant only.		
14.a.	Find approximate values for the first three eigenvalues of a square nembuance of side 2.		
(OR)			CO4
14.b.	Derive the Riemann-Volterra solution of the one-dimensional wave equation.		
15.a.	Find the temperature in a sphere of radius 'a' when its surface is maintained at zero temperature and its initial is $f(r, \theta)$.		
	(OR)		CO5
15.b.	Determine the function θ (r,t) satisfying $\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} = \frac{1}{k} \frac{\partial \theta}{\partial t} t > 0, 0 < r < a$ and the conditions $\theta(r,0) = 0$, $\theta(a,t) = f(t)$.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	CO
16	Verify that $z = ax + by + a + b - ab$ is a complete integral of the partial differential equation $z = px + qy + p + q - pq$, where a, b are arbitrary constants. Show that the envelope of all planes corresponding to complete integrals provides a singular solution of the differential equation and determine a general solution by finding the envelope of those planes that pass through the origin.	K5	CO1
17	Reduce the equation $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form.	K2	CO2
18	Show that the surfaces $(x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4 = c$ can form of equipotential surfaces and find the general form of the corresponding potential function.	К3	СОЗ
19	A thin membrance of great extent is released from rest in the position $z = f(x, y)$. Determine the displacement at any subsequent time.	K3	CO4
20	State and prove Duhamel's theorem.	K4	CO5