TOTAL PAGES: 22CHP207N

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - CHEMISTRY

QUANTUM MECHANICS AND GROUP THEORY

Time: Three Hours

Mass "

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	Questions	K level	СО
No. 1	<u>No.</u> 1.	The product of two wave functions of a particle in 1D-box, say $\psi(n=1)$ and $\psi(n=2)$, is a) one b) zero c) infinity d) always a fraction	K1	CO1
	2.	One of the following is not a linear operator. a) Taking square root b) d/dx c) d ² /dx ² d) dx	K2	CO1
2	3.	The energy expression for the rigid rotator is given by a) $E_J = (h^2/2I) J(J+1)$ b) $E_J = (2I/h^2) J(J+1)$ c) $E_J = J(J+1)/2I h^2$ d) $E_J = (2Ih^2) / J(J+1)$	K1	CO2
	4.	The energy difference (ΔE) between any two consecutive energy levels of a particle in a 1-D box is a) $2h^2/8mL^2$ b) $(2n+1)h^2/8mL$ c) $h^2/8mL^2$ d) $(3n+1)h^2/8mL^2$	К2	CO2
3	5.	In the perturbation method, which of the following terms is neglected in the Hamiltonian operator? a) total kinetic energy b) The nuclear-electronic attraction c) electronic - electronic repulsion d) electronic - nuclear repulsion	K2	CO3
	6.	According to the Born-Oppenheimer approximation, the nuclear wave function ψ_n is given by a) $E_e\psi_n = E\psi_n$ b) $\hat{H}_n \psi_n = E\psi_n$ c) $(\hat{H}_n + E_e) \psi_n = E\psi_n$ d) $\Psi = \psi_e\psi_n$	K1	CO3
4	7.	The character of (3×3) matrix representation of C ₂ (z) rotational operation is a) 3 b) 1 c) -1 d) zero	K1	CO4
	8.	The point group of the Cl_2 molecule is a) $C_{\alpha V}$ b) C_{2V} c) $D_{\alpha h}$ d) C_i	K2	CO4
5	9.	How many infrared (IR) signals can be obtained for an ammonias molecule? a) One b) Two c) Three d) Four	K2	CO5
	10.	The irreducible representations representing out-of-plane deformation vibration modes of $[PtCl_4]^{2-}$ is a) $A_{2u} + B_{2u}$ b) 2 B_{2u} c) $E_g + B_{2u}$ d) 2 A_{2u}	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

 $(5 \times 7 = 35)$ ALL questions carry EOUAL Marks

		ALL questions carry EQUAL Marks		
Module No.	Question No.	Question	K Level	СО
	11.a.	(i) Distinguish between ψ and ψ^2		
ı	(i) Distinguish between waves. 11.b. (ii) Show that oper	(OR)	K4	CO1
1		 (i) Distinguish between matter waves and electromagnetic waves. (ii) Show that operators, AB≠BA for a function f(x), If operator A= d/dx and operator B=x². 		

Cont...

22CHP207N

				Cont
2	12.a.	Solve the Schrodinger wave equation of particle in a 1D box to obtain the normalized wavefunction and energy equation.		
	<u> </u>	(OR)	K5	CO2
	12.b.	Obtain the solutions for the Schrodinger wave equation of a rigid rotator.		
	13.a.	Determine the ground state energy of the He atom using first-order perturbation theory.		
3		(OR)		CO3
	13.b.	Explain Pauli's antisymmetric principle by taking H ₂ as an example.	K5	
•		Answer the following questions from the irreducible character table of the D _{3h} point group		
	14.a.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
4		 (i) Number of mutually conjugated classes (ii) Order of the group (iii) Number of irreducible representations (iv) S₃³ =? (v) A₂' × A₁'' = (vi) Is D_{3h} an abelian group? 	K4	CO4
	-	(OR)		
. 1	14.b.	(i)Distinguish between an abelian and a non-abelian group (ii)Direct product of E^2 , in the C_{3v} point group Show that " $S_2 = i$ " in the C_{2h} point group.		
· -	15.a.	Obtain the irreducible representations representing vibrational modes of the water molecule.		
. s*	·	(OR)	•	
5	15.b.	Discuss how group theory predicts sp^2 hybridization is present in BF ₃ molecule. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K6	CO5

SECTION -C (30 Marks) Answer ANY THREE questions

		ALL questions carry EQUAL Marks (3	× 10 =	30)
Module No.	Question No.	(Direction	K Level	СО
1	16	Discuss the postulates of quantum mechanics.	K6	CO1
2	17	Set up the Schrodinger wave equation for the hydrogen atom. Determine solution for the ground-state wavefunction and Energy expression of hydrogen atom.	K5	CO2
3	18	Obtain the delocalization energy of a butadiene molecule using Huckel's Molecular Orbital Theory.	K5	соз
4		(i)Decompose the given reducible representation of C _{3V} point group into its irreducible representations. C _{3V} E C ₃ (z) 3σ _V Γ _{red} 15 0 3 (ii)Construct the irreducible character table for the C _{3V} point group using the Great Orthogonality Theorem.	K5	CO4
5		How does group theory predict the number of IR and Raman signals for POCl ₃ molecule? Explain.	K4	CO5