TOTAL PAGES: 2 22CHP205N #### PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) # MSc DEGREE EXAMINATION MAY 2025 (Second Semester) ## Branch - CHEMISTRY # ORGANIC REACTION MECHANISM AND RETRO - SYNTHESIS Time: Three Hours Maximum: 75 Marks ## SECTION-A (10 Marks) Answer ALL questions **ALL** questions carry **EQUAL** marks $(10 \times 1 = 10)$ | Module
No. | Question
No. | Question | K
Level | СО | |---------------|-----------------|---|------------|-----| | 1 | 1 | Which of the following statements are incorrect? (a) Vinyl chloride does not give SN reaction but allyl chloride gives. (b) Displacement of H' is easier than that of Cl' (c) CH₂-CH=CH-CH₂Cl reacts with KCN to give a mixture of isomeric products. (d) CH₃-CH₂-O-CH₂-Cl is much more reactive in SN1 reaction than CH₃-CHCl-CH₃ | K 1 | CO1 | | | 2 | In an S _N 2 reaction there is (a) Partial racemization (b) Complete racemization (c) Complete inversion (d) A little inversion and mostly racemization | К2 | CO1 | | | 3 | Which one the following alkyl iodide readily undergoes elimination? (a) methyl (b) n-propyl (c) isopropyl (d) tertiary butyl | K1 | CO2 | | 2 | 4 | Reaction intermediate of E1CB mechanism is: (a) Carbocation (b) Six membered cyclic TS (c) Carbanion (d) Benzyne | K2 | CO2 | | 3 | 5 | Which one of the following reaction can be used for the formation of C-C-N bond in organic synthesis? (a) Aldol condensation (b) Mannich reaction (c) Michael addition (d) Robinson annulation | K1 | CO3 | | | 6 | Condensation of diethyl succinate with a ketone in the presence of t-BuOK gives (a) Lactone (b) Unsaturated ester (c) Alkene (d) Keto-ester | K2 | CO3 | | | 7 | Which one of the following is used as a phase transfer catalyst? (a) Primary amine (b) Tertiary nitro alkane (c) Quaternary ammonium salt (d) Tertiary amine | K1 | CO4 | | 4 | 8 | Suggest a reagent for the conversion of α-picoline to pyridine-2-carbaldehyde (a) SeO ₂ (b) LiAlH ₄ (c) DCC (d) NaBH ₃ CN | K2 | CO4 | | 5 | 9 | 1,3-dithiane is an example for (a) Synthon (b) Synthetic equivalent (c) Umpolung (d) Target unit | K1 | CO5 | | | 10 | An imaginary bond breaking corresponding to the reverse of real reaction is known as (a) FGI (b) Target molecule (c) Disconnection (d) Reversal of polarity | K2 | CO5 | #### SECTION - B (35 Marks) Answer ALL questions ALL questions carry EQUAL Marks $(5 \times 7 = 35)$ | Module
No. | Question
No. | Question | K
Level | СО | |---------------|-----------------|--|------------|----------| | 1 | 11.a. | (i) C ₂ H ₅ I is more reactive than C ₂ H ₅ Br towards nucleophilic substitution reactions. Inspect this statement. (3) (ii) Distinguish between S _N I and S _N 2 mechanisms. (4) | | | | | 11.b. | (OR) (i) CH ₃ COO ⁻ is a stronger nucleophile than CF ₃ COO ⁻ . Comment this statement. (3) (ii) How would you effect the following transformation? Examine its | K4 | CO1 | | | | mechanism, Pyridine → 2-aminopyridine. (4) | | <u> </u> | Cont... #### 22CHP205N Cont... | 2 | 12.a. | (i) Account for the fact that tert-butyl alcohol undergoes dehydration extremely rapidly. (ii) Compare Hoffmann and Saytzeff rules of elimination reactions with examples. (OP) | K5 | CO2 | |-----|-------|--|----|-----| | | 12.b. | (OR) (i) Complete the following reactions: 1. CH ₃ CHO + SeO ₂ →? 2. CH ₃ CHO + NH ₂ -NH ₂ /NaOEt →? 3. CH ₃ CHO + CH ₃ -CH(OH)-CH ₃ +Al[OCHMe ₂] ₃ →? (2+2+3=7) | | | | | 13.a. | (i) Explain the mechanism of Benzoin condensation. (3) (ii) How would you effect the following transformation? Examine its mechanism. Benzaldehyde → Styrene | K4 | CO2 | | 3 | - | (OR) | | CO3 | | | 13.b. | (i)Addition of HX on alkenes is regioselective. Justify this statement.(3) (ii) Explain the mechanism of Stobbe condensation with an example.(4) | | | | | 14.a. | (i) Write the synthetic importance of LDA. (ii) Pick out the suitable reagent(s) for the following reactions: 1. Ethyl benzoate → Benzyl alcohol 2. Cyclohexene → Hexanedial (2+2=4) | | | | 4 | | (OR) | | CO4 | | t - | 14.b. | (i) List the synthetic uses of crown ethers. (ii) Identify the suitable reagent (s) for the following reactions: 1. CH₃-CH=CH-CHO →CH₃-CH₂-CH₂-CHO 2. CH₃-CO-Cl →CH₃-CH₂-OH (2+2=4) | | | | | 15.a. | (i) Distinguish between regio-selectivity and chemo-selectivity. (3) (ii) Disconnect aspirin and suggest the retro synthetic route for aspirin with proper reagent. (4) | | | | 5 | (OR) | | K5 | CO5 | | | 15.b. | (i) List the advantages of retro synthesis. (ii) Discuss two groups C-C disconnection with reference to Diels-Alder reactions. (5) | | | # SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks $(3 \times 10 = 30)$ | Module
No. | Question
No. | Question | K
Level | со | |---------------|-----------------|---|------------|-----| | 1 | 16 | (i)Compare the reactivity of chlorine atom in (1) methyl, (2) ethyl (3) vinyl and (4)allyl chlorides towards nucleophilic substitution reactions. (4) (ii) How would you effect the following transformation? Examine its mechanism with evidences. C₆H₅-Cl →C₆H₅-NH₂(6) | K4 | CO1 | | 2 | 17 | (i) Give evidence to prove that E2 reactions are predominantly antieliminations, and there is relation between conformation and reactivity. (5) (ii) Assess the salient features and mechanistic path ways of Birch reduction. (5) | K5 | CO2 | | 3 | 18 | Predict the products of the following reactions and propose their reaction mechanism: (i) CH ₃ CHO + CH ₂ -(COOH) ₂ + Pyridine → ? (5) (ii) 2CH ₃ CHO + NaOH → ? (5) | K6 | CO3 | | 4 | 19 | Suggest the suitable reagent(s) for the following functional group transformations? (i) C_6H_5 -CH=CH-CHO $\rightarrow C_6H_5$ -CH ₂ -CH ₂ -CH ₂ -OH (ii) C_6H_5 -I $\rightarrow C_6H_5$ -CH ₃ (iii) R-OH \rightarrow R-I (iv) C_1 -CH ₂ -CH ₂ -O-CO-CH ₃ \rightarrow CH ₃ -CH ₂ -O-CO-CH ₃ (4x2.5=10) | K5 | CO4 | | 5 | 20 | (i) Write the protecting and deprotecting group for ketones. (2) (ii) What are synthetic equivalents? Mention their synthetic applications. (3) (iii) List any five one step functional group interconversions from 2-butene. (5) | K4 | CO5 | **END**