PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

Branch - BIOTECHNOLOGY

BIOPROCESS TECHNOLOGY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	со
1	1	The most widely used control system in modern bioreactors isa) Open-loop control b) Manual control c) Feedback control d) All the above	K1.	CO1
	2 ·	The function of a sparger in a fermentor is to a) Control temperature b) Supply sterile air or oxygen c) Maintain pH balance d) Prevent contamination	K2	CO1
2	3	Inoculum development is important because a) It ensures a pure and active culture b) It increases the efficiency of product purification c) It reduces contamination during downstream processing d) It is used only for industrial enzymes	K 1	CO2
	. 4	In a batch culture, the exponential phase of microbial growth is characterized by a) Constant cell concentration b) Maximum specific growth rate c) Nutrient depletion d) Accumulation of toxic byproducts	K2	CO2
3	5	Which of the following is NOT a common scale-up criterion in bioprocess technology? a) Constant power per unit volume b) Constant oxygen transfer rate c) Constant pH level d) Constant mixing time	K1	CO3
	6	Power consumption per unit volume in a bioreactor is mainly influenced by a) Substrate concentration b) Inlet gas flow rate c) Temperature and pH d) Agitator speed and impeller diameter	K2	CO3
4	7	technique is commonly used for cell disruption in intracellular product recovery. a) Filtration b) Chromatography c) Precipitation d) Homogenization	K1	CO4
	8	Affinity chromatography is based on a) Molecular weight differences b) Specific binding interactions between biomolecules c) Charge differences d) Solubility differences	K2	CO4
5	9	Which of the following does not have the property of production of secondary metabolites? a) Sporing bacteria b) Filamentous bacteria c) Filamentous fungi d) Enterobacteria	K1	CO5
	10	is the main industrial application of shikonin a) Anti-diabetic drug b) Anticancer and wound healing agent c) Insecticide d) Food preservative	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	СО
	11.a.	Summarize the process optimization of bioreactors.		
	-	К3	CO1	
	11.b.	Describe the bioprocess design for animal cell reactor.		
	12.a.	Explain the methods involved in strain development and preservation of microorganisms.		
2		K3	CO2	
	12.b.	Elucidate the kinetics of cell growth using structured and unstructured models.		
3	13.a.	Explain the significance of rheology and fluid type (Newtonian vs non-Newtonian) in fermentation scale-up.	K3	CO3
3		C.A	003	
	13.b.	Summarize the effect of scale on oxygenation and nutrient availability in fermentation processes.		
	14.a.	Describe the techniques for removing microbial cells and solid matter in downstream processing.		
4		K4	CO4	
	14.b.	Illustrate the key aspects of product stabilization, formulation and storage in downstream processing.		
	15.a.	Summarize the applications of bioprocessing technology in converting starch and high-fructose corn syrup.		CO5
5	;	(OR)	K3	
	15.b.	What are the key steps involved in the production of monoclonal antibodies using mammalian cells.		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3\times10=30)$

Module No.	Question No.	Question	K Level	СО
1	16	Elaborate the types of fermentor.	K 6	CO1
2	17	Discuss aerobic and anaerobic fermentation process.	K.5	CO2
3	18	How can bioreactor scale-up be optimized by maintaining constant power input per volume, impeller tip speed and ensuring efficient oxygen transfer?	K5	CO3
4	19	How do filtration, centrifugation and precipitation contribute to product purification in downstream processing?	K4	CO4
5	20	Describe the process of Hepatitis B surface antigen production using yeast as a host system.	K5	CO5