PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - STATISTICS

PROBABILITY THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

	1222 questions outly Declar mans (10 × 1 10)							
Module No.	Question No.	Question	K Level	СО				
1	1	Classical probability is also known as: (a) Laplace's probability (b) mathematical probability (c) a priori probability (d) all the above	K1	CO1				
	2	Classical probability is measured in terms of: (a) an absolute value (b) a ratio (c) absolute value and ratio both (d) none of the above	K2	COI				
2	3	If X and Y are two random variables, then (a) $E(XY)^2 = E(X^2) E(Y^2)$ (b) $E(XY)^2 = E(X^2Y^2)$ (c) $E(XY)^2 \ge E(X^2) E(Y^2)$ (d) $E(XY)^2 \le E(X^2) E(Y^2)$	K1	CO2				
	4	If X is a random variable and its p.d.f. is f(x), E (log~x) represents: (a) arithmetic mean (b) geometric mean (c) harmonic mean (d) logarithmic mean	K2	CO2				
ļ	5	If X is a random variable the E(t ^x) is (a)CGF (b) MGF (c) PGF (d) xth moment	K1	CO3				
3	6	The heights of fathers and their sons form bivariable variables are type of variables. (a) continuous variables (b) discrete variables (c) pseudo variables (d) none of the above	K2	CO3				
	7	The law of large numbers shows a relationship between the theoretical probability and the (a) sample size (b) exponential probability (c) experimental probability (d) rational probability	K1	CO4				
.4	8	What values are required to calculate Chebyshev's inequality? (a) The mean and median (b) The mean and standard deviation (c) The median and standard deviation (d) The variance and distribution	K2	CO4				
5	9	A random variable X follows a standard normal distribution and a function of X as $Y = 3x + 2$ is given. If $\mu x = 0$ and $\sigma x = 1$, what are the mean (μy) and standard deviation (σy) of Y? (a) $\mu y = 0$, $\sigma y = 1$ (b) $\mu y = 2$, $\sigma y = 1$ (c) $\mu y = 2$, $\sigma y = 3$ (d) $\mu y = 0$, $\sigma y = 3$	K2	CO5				
	10	A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability that exactly two of the three balls were red, the first ball being red, is (a).1/3 (b).4/7 (c).15/28 (d).None of the above	К2	CO5				

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11a	Define probability. Brief about the various approached of probability. Illustrate.	K3	CO1
	(OR)		ا دم ا	
	11b	State and prove the additive theorem of probability of two events.		
2	12a	Deleneate about continuous Distribution function and its properties.		
		(OR)		CO2
	12b	State and Prove the multiplicative theorem property of Expectation.		
	13a	Explain joint probability mass function – Illustrate.		
3		(OR)		CO3
	13b	Delineate about Bivariate Distribution – Illustrate.		
4	14a	Illustrate the properties of MGF.	K3	
		(OR)		CO4
	14b	State and prove the Chebyche's Inequality.	<u> </u>	
5	15a	Derive the distribution of the additive of two random variable.	K4	905
		(OR)		CO5
	15b	P.T V(X) = E [V(X/Y)] + [E(X/Y)].		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	In a certain town there are equal number of male and female residents. It is known that 5% females and 20% males are unemployed. If any unemployed person is picked-up at random, what is the probability that: A)it is male and B)it is female? Use Bayes law	K4	CO1
2	17	a) Define co variance and its properties b) Let $X_1 X_2 \dots x_n$ be h random variables, then show that $V\left(\sum_{i=1}^n a_i x_i\right) = \sum_{i=1}^n a_i^2 V(x_i) + 2 \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(x_i x_j)$ $(i < j)$	K4	CO2
3	18	Two random variables X and Y have the following point probability density function $f(x,y) = \begin{cases} z-x-y; \ 0 \le x \le 1, 0 \le y \le 1 \\ 0; \ otherwise \end{cases}$ find (i) Managerial density function of X and Y (ii) Conditional density functions (iii) Var (x) and Var (Y) and (iv) covariance between X and Y	K4	CO3
4	19	State and prove that the Weak Law of Large Numbers.	K4	CO4
5	20	Prove that i. The joint p.d.f g(u,v) of the transformed variables U and V is g(u,v) = f(x,y) J ii. If X and Y are independent continuous random variable, then the pdf of U = X + Y is given by $h(u) = \int_{-\infty}^{\infty} f(v)f(u-v)dv$	K4	CO5