PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc- DEGREE EXAMINATION MAY 2025 (Fifth Semester)

Branch - PHYSICS

PRINCIPLES OF DIGITAL ELECTRONICS

Time: Three Hours		Maxim	Maximum: 50 Marks	
	Answe	ON-A (5 Marks) or ALL questions		
	ALL questions	carry EQUAL marks	$(5 \times 1 = 5)$	
1	Which code is used to minimize (i) ASCII (iii) Gray Code	the chance of errors dur (ii) Excess-3 Code (iv) 4221 Code	ing data transmission?	
2	What is the Boolean expression (i) A·B (iii) A-B	for the output of an OR (ii) A+B (iv) A/B	gate?	
3	Which combinational circuit con (i) Decoder (iii) Multiplexer	verts binary numbers to (ii) Encoder (iv) Using EX-OR gat		
4	dentify the counter which is designed to count events in synchronization with a lock signal. i) Asynchronous Counter (ii) Synchronous Counter (iii) Ring Counter (iv) Shift Register			
5	Where is a Dual Slope A/D Con (i) High-speed applications (iii) Precision measurements	(ii) Digital watches	plification	
	SECTION	ON - B (15 Marks)	• • • •	
		er ALL Questions s Carry EQUAL Marks	$(5 \times 3 = 15)$	
6 a)	Calculate the result of binary complement method. OR	subtraction between 1	0110 and 01101 using 2's	
b		verting a hexadecimal	number 2F into its binary	
7 a)	Compare the NAND and NOI gates. OR	R gates in terms of their	functionality as universal	
b)		4 (A.D)+C	Sum of Products) or POS	
8 a)	Solve a problem where you need to design a 4-bit binary adder circuit and explain its components. OR			
b)		rting a binary number t	o Gray code using an EX-	

Page 2

22PHU518 Cont...

9 a) Describe the working principle of a synchronous counter and how it differs from an asynchronous counter.

OR.

- b) Analyze the function of a shift register in data storage and its applications.
- 10 a) Explain how a counter-type A/D converter functions and where it is typically used.

OR

b) Summarize the main differences between the Dual Slope and Successive Approximation A/D converters.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a) Differentiate between BCD (Binary-Coded Decimal) and Gray code. Discuss their applications and how they affect digital systems.

OF

- b) Elucidate the concept of 1's and 2's complements in binary arithmetic. Discuss their significance and applications in digital circuits.
- 12 a) Outline the procedure for simplifying a Boolean expression using Karnaugh Maps (K-map) for a four-variable function. Provide an example.

OR

- b) Examine the use of Karnaugh Maps (K-maps) in minimizing Boolean functions for a three-variable system. Illustrate with a practical example.
- 13 a) Discuss the role of a BCD adder in digital systems and its functionality in handling decimal digits. Illustrate with an example of adding two BCD numbers.

OR

- b) Outline the implementation and benefits of using multiplexers and demultiplexers in digital circuits. Provide examples.
- 14 a) Analyze the functionality and timing diagrams of SR, D, and JK flip-flops. Discuss their applications in digital sequential circuits.

OF

- b) Trace the operation of a ring counter and a Johnson counter, highlighting their differences and uses in digital systems.
- 15 a) Elucidate the working principles of a Binary Weighted Resistor D/A Converter and a R-2R Ladder D/A Converter. Discuss their advantages and limitations.

OR

b) Describe the internal structure and operation of a 555 Timer. Explain its use in both astable and monostable modes with examples.

Z-Z-Z END