Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

COMPLEX ANALYSIS

Time: Three Hours							Maximum: 50 Marks	
1	SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks (5 x 1 = 5) Choose the correct statement from the following. a) A continuous function is differentiable b) A differentiable function is continuous c) Every single-valued function is continuous d) Every single-valued function is differentiable							
2	Cont a) cu	our is a type of rve	in t b) area	he comp	lex plane. c) closed re	egion	d) closed curve	
3	$\int_{C} \frac{e^{z} d}{z}$	<u>/z</u> =, wh	ere C is the	circle z	=1			
	a) 2 <i>n</i>	r i 1	b) πi/2	ż	c) 4π <i>i</i>		d) $\frac{\pi}{2}i$	
4	The s	ingular point of	$f(z) = \frac{1}{z}$ is					
	a) 0		o) 1		c) i		d) - i	
5	The real of the re	esidue of cotz at t l	he simple pol o) ∞		c) z		d) 1	
		£		ALL Q		arks	$(5 \times 3 = 15)$	
6	a	prove that its component functions u and v are harmonic in D.						
	OR Suppose that a function $f(z) = u(x, y) + iv(x, y)$ and its conjugate $\overline{f(z)} = u(x, y) - iv(x, y)$ are both analytic in a domain D show that $f(z)$ must be constant in the domain.							
7	a	Let C denote a contour of length L, and suppose that a function $f(z)$ is piecewise continuous on C. If M is a nonnegative constant such that $ f(z) \le M$ for all points						
		z on C at which f(z) is defined, then prove that $\left \int_{C} f(z) dz \right \leq ML.$						
	ь	OR Suppose $f(z)$ is an analytic function in a simply-connected region D , $A(a)$ and $B(b)$ are two points in D . Let C be any arbitrary chosen simple rectifiable arc in D oriented from A to B then prove that the integral $\int f(z)dz$ does not depend						
						\bar{c}		

on C but depends on a and b

8 State and prove Liouville's e theorem. a

- b Let f(z) be a function is analytic inside and on a simple closed curve C. Let z₀ be any point in the interior of C. then prove that $f(z_0) = \frac{1}{2\pi i} \int \frac{f(z)}{z-z}$.
- 9 Let f(z) be a function which is analytic inside and on a simple closed curve C except for a finite number of singular points z_1, z_2, \dots, z_n inside C. Then prove that $\int_{C} f(z) dz = \frac{1}{2\pi i} \sum_{j=1}^{n} \text{Re} s\{f(z; z_{j})\}$

- Find the circle C, where $\int_{C} \frac{1}{z^2 4} dz = 0$. b
- If f(z) and g(z) are analytic inside and on a simple closed curve C and if 10 a |g(z)| < |f(z)| on C then prove that f(z)+g(z) and f(z) have the same number of zeroes inside C.

OR

Prove that every polynomial of degree ≥1 has at least one zero. b

SECTION -C (30 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 Derive Cauchy's -Riemann equation in polar form.

- (i) Prove that the real and imaginary parts of an analytic function are harmonic b functions.
 - (ii) Calculate the analytic function f(z)= u+iv of which the real part is $u = e^x(x \cos y - y \sin y)$
- 12 State and prove Cauchy-Goursat theorem.

- Calculate the residue of $\frac{1}{(\pi^2 + \alpha^2)^2}$ at z=ai. b
- 13 a State and prove Laurent's theorem.

- State and prove maximum modulus theorem. b
- 14 State and prove Cauchy's Residue theorem.

b Evaluate the following integrals.

(i)
$$\int_C \frac{1}{2z+1} dz$$
; C is $|z|=1$

(ii)
$$\int_C \frac{1}{2z+3} dz$$
; C is $|z|=2$

- Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx$ (a > b > 0)15
 - Evaluate the poles of $f(z) = \frac{z^2 + 4}{z^3 + 2z^2 + 2z}$ and determine the residue at the b poles.