PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ADVANCED MATHEMATICAL STATISTICS - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question	Question Question		СО			
1	1	A selection procedure of a sample having no involvement of probability is a) convenience sampling b) judgement sampling c) Quota sampling d) all the above	Level K1	CO1			
	2	The estimator $\frac{\sum x_i}{n}$ of population mean is a) an unbiased estimator b) a consistent estimator c) both (a) and (b) d) neither (a) nor (b)	К2	CO1			
2	3	By the method of moments one can estimate: a) all constants of a population b) only mean and variance of a distribution c) all the moments of a population distribution d) all of these	K1	CO2			
	A maximum likelihood estimator is not necessarily: a) unbiased b) consistent c) sufficient d) efficient						
3	5	Level of significance is the probability of a) Type I error b) Type II error c) both (a) and (b) d) not committing any error	K1	CO3			
	6	Range of the statistic - t is a) -1 to 1 b) $-\infty$ to ∞ c) 0 to ∞ d) 0 to 1	K2	CO3			
4	7	When conducting a two tailed z-test, the tabulated value at 1% level of significance is a) 1.96 b) 2.58 c) 1.645 d) 2.33	K1	CO4			
	8	The test statistic for a paired t-test is a) $\frac{ \vec{x}-\mu }{s/\sqrt{n}}$ b) $\frac{ \vec{x}-\mu }{\sigma/\sqrt{n}}$ c) $\frac{ \vec{d} }{s/\sqrt{n}}$ d) $\frac{ \vec{d} }{\sigma/\sqrt{n}}$	K2	CO4			
_	9	In a 3X3 contingency table, the degrees of freedom is a) 9 b) 6 c) 7 d) 4	K1	CO4			
5	10	In χ^2 test, no expected frequency should be a) less than 1 b) more than 1 c) less than 5 d) more than 5	K2	CO4			

SECTION - B (35 Marks) Answer ALL questions

ALL questions carry EOUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.						
1	11.a.	Identify and describe the different methods of simple random sampling with relevant examples.	К3	CO1			
		(OR)					
	11.b.	Solve and Show that the function $\frac{\sum x_l(\sum x_l-1)}{n(n-1)}$ is an unbiased estimator of p^2 for the sample $x_1, x_2,, x_n$ drawn on x which takes the 1 or 0 with respect to probabilities p and 1-p.	К3	CO1			
	· -	To the search	Co	nt			

Signal State of Signal State o

23MCU418N Cont...

								``			
2	12.a.	Identify and sta Estimators (MI									
	(OR)								CO2		
	Let x_1, x_2, \dots, x_n denote random sample of size n from uniform							K3	COZ		
	12.b.	population wit									
	!		≤∞. Solve and obtain the MLE of θ.								
	13.a.	Explain the ter One tailed and	K2	909							
3	(OR)								CO3		
	13.b.	ent's	<u> </u>								
	:	Random samn	t-distribution with necessary steps and assumptions. Random samples of 200 bolts manufactured by machine A and								
	14-	100 holts ma	100 bolts manufactured by machine B showed 19 and 5 defective bolts respectively. Test if there is a significant								
4	14.a.	defective bolt difference bety	K4	CO4							
	<u></u>										
	<u> </u>			OR)		eftwo warian	Ces	[ļ		
	14.b. Explain the procedure for testing the equality of two variances.										
	15.a.	Analyze the procedure for testing the independence of attributes in a 2×2 contingency table.									
	(OR)								ļ		
5			j								
		the attributes u	For the following contingency table, test the independence of the attributes using χ^2 test.								
	15.b.	Attendance		Income level				K4	CO4		
		\ <u> </u>	Low	Middle	High 15	Total 86					
		Never	27	63	14	102					
		Occasional	25 22	74	12	108		1			
		Regular Total	74	181	41	296					
1		Total			 _						

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

		ALL ques	tions can	y EQU	IAL N	larks	(3 ×	10 = 30	<u>) </u>		
Module	Question									K Level	СО
No.	No	Compare and contrast different non-probability sampling methods with examples.								K4	CO1
2	17	For the double Poisson distribution $P(x) = \frac{1}{2} \frac{e^{-m_1 m_1^x}}{x!} + \frac{1}{2} \frac{e^{-m_2 m_2^x}}{x!}$; $x=0,1,2$ Show that the estimates for m_1 and m_2 by the method of moments are $\mu'_1 \pm \sqrt{\mu'_2 - \mu'_1 - \mu'_1^2}$.								K4	CO2
3	18	Analyze the steps involved in the general procedure of hypothesis testing.								K4	CO3
4	19	Two independent sample 9 11 A Sample 10 12 B Examine whether the is significant at 5%	13 2 10 he difference level?	11 14 ence be	9 tween	8 the n	10 neans (of the tw	vo samples	K4	CO4
5	20	A book has 700 particles of misprints are distributed in the misprints are distributed in the misprint of misprint in the misp	ages. The ed below. buted according	At 5%	signii	1canc	e teaer	fert wire	numbers of ether the	K4	CO4
Z-Z-Z END											