## PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

# **BSc DEGREE EXAMINATION MAY 2025**

(Fifth Semester)

#### MATHEMATICS WITH COMPUTER APPLICATIONS Branch -

## REAL ANALYSIS

| Time: Three Hours | •                               | Maximum: 50 Marks  |
|-------------------|---------------------------------|--------------------|
|                   | SECTION-A (5 Marks)             |                    |
|                   | Answer ALL questions            | <u>-</u>           |
| ·                 | ALL questions carry EQUAL marks | $(5 \times 1 = 5)$ |

In a metric space  $\langle M, \rho \rangle$ , for all  $x, y, z \in M$ , the triangle inequality is \_\_\_\_ 1.

(i)  $\rho(x,y) \le \rho(x,z) + \rho(z,y)$  (ii)  $\rho(x,y) \ge \rho(x,z) + \rho(z,y)$ (iii)  $\rho(x,y) < \rho(x,z) + \rho(z,y)$  (iv)  $\rho(x,y) > \rho(x,z) + \rho(z,y)$ 

Let G be an open subset of a metric space M, then G' = M - G is \_\_\_\_\_ 2.

(i) open

(ii) closed

(iii) φ

(iv) M

Which among the following is a connected subset of  $R^{1}$ ? 3.

- (i) [1,3] U [3,5]
- (ii)  $(0,\infty)$
- (iii)  $(4,6] \cup [7,8)$
- (iv)  $[0,2] \cup [3,4]$

Identify the compact metric space from the following 4.

(i)  $R^1$ 

(ii) (0,1)

(iii) [a,b]

(iv) Infinite subset of  $R^d$ 

Which among the following is not a correct statement? 5.

- (i) If J = (2,5), then |J| = 7 (ii)  $\left| \int_a^b f \right| \le \int_a^b |f|$  (iii)  $\int_a^b f + g = \int_a^b f + \int_a^b g$  (iv) if  $f \ge 0$ , then  $\int_a^b f \ge 0$ .

# SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$ 

6 a Show that the set of real numbers R is a metric space with the metric  $\rho(x,y)=|x-y|.$ 

OR

- b Let  $< M, \rho >$  be a metric space. If  $\{s_n\}_{n=1}^{\infty}$  is a convergent sequence of points in M, then prove that  $\{s_n\}_{n=1}^{\infty}$  is Cauchy.
- 7 a If  $F_1$  and  $F_2$  are closed subsets of the metric space M, then  $F_1 \cup F_2$  is closed.

B If f and g are real valued functions, if f is continuous at a and if g is continuous at f(a), then  $g \circ f$  is continuous at x = a.

8 a If  $u = \{u_n\}_{n=1}^{\infty} \in l^2$ . Let  $Tu = \left\{\frac{u_n}{2}\right\}_{n=1}^{\infty}$ . Prove that T is a contraction on  $l^2$ .

b If the subset A of the metric space  $\langle M, \rho \rangle$  is totally bounded, then A is bounded.

Cont...

Cont...

9 a Let f be a continuous function from the compact metric space  $M_1$  into the metric space  $M_2$ . Then prove that the range  $f(M_1)$  of f is also compact.

OR

b If f is one to one continuous function from the compact metric space  $M_1$  into the metric space  $M_2$ , then prove that  $f^{-1}$  is continuous on  $M_2$  and hence f is a homeomorphism of  $M_1$  onto  $M_2$ .

10 a If  $f, g \in \mathcal{R}[a, b]$ , then prove that  $f + g \in \mathcal{R}[a, b]$  and

$$\int_a^b f + g = \int_a^b f + \int_a^b g.$$

b State and prove Rolle's theorem.

### SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$ 

11 a Let  $\langle M, \rho \rangle$  be a metric space and let 'a' be a point in M. Let f and g be real valued functions whose domains are subsets of M. If  $\lim_{x\to a} f(x) = L$  and

 $\lim_{x\to a}g(x)=N, \text{ then }$ 

- $\begin{array}{ll}
  \text{(i)} & \lim_{x \to a} [f(x) + g(x)] = L + N \\
  \text{(ii)} & \lim_{x \to a} [f(x) * g(x)] = LN.
  \end{array}$

**OR** 

- b (i) Prove that  $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) \neq L$ . (ii) Prove that  $\lim_{x\to \infty} \left(\frac{1}{x^2}\right) = 0$ .
- 12 a Prove that "The set  $R^1$  is of the second category".

- b (i) Show that the function  $f(x) = x^2 + 2x$  is continuous at x = 3.
  - (ii) If E is any subset of a metric space M, then  $\bar{E} = \bar{E}$ .
- 13 a Prove that "The subset A of  $R^1$  is said to be connected if and only if whenever  $a \in$  $A, b \in B$ , with a < b, then  $c \in A$  for any c such that a < c < b. That is, whenever  $a \in A$ ,  $b \in B$ , a < b, then  $(a, b) \in A$ ."

b Let  $\langle M, \rho \rangle$  be a complete metric space. If T is a contraction on M, then there is one and only one point  $x \in M$  such that Tx = x. That is T has precisely one fixed

point. 14 a Prove that "If M is a compact metric space, then M has the Heine Borel property."

- b Let  $\langle M_1, \rho_1 \rangle$  be a metric space and let A be a dense subset of  $M_1$ . If f is a uniformly continuous function from  $\langle A, \rho_1 \rangle$  into a complete metric space  $\langle$  $M_2, \rho_2 >$ , then prove that f can be extended to a uniformly continuous function F from  $M_1$  into  $M_2$ .
- 15 a Suppose g has a derivative at c and that f has a derivative at g(c). Then prove that  $\phi = f \circ g$  has a derivative at c and  $\phi'(c) = f'(g(c))g'(c)$ .

b If f is continuous on the closed bounded interval [a,b] and if

$$F(x) = \int_{a}^{x} f(t)dt, \quad a \le x \le b,$$

Then prove that F'(x) = f(x),  $a \le x \le b$ .