PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER SERIES

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Question No.	Question	K Level	СО
1 .	An equation involving partial derivative coefficients of a function of two or more variables isequation. (a) partial differential (b) ordinary differential (c) fractional differential (d) differential equation	K1	CO1
2	The of a partial differential equation is the highest order of any derivative present in the equation. (a) form (b) order (c) degree (d) linear form	K1	CO1
3	How many arbitrary constants are generally present in the general solution of a first-order PDE? (a) Zero (b) One (c) Two (d) Four	K1	CO2
4	A complete integral of a first-order PDE is (a) a solution that satisfies the PDE for all values of constants (b) a specific solution obtained by assigning specific values to constants (c) a solution that contains all possible solutions (d) a solution that is not defined	K2	CO2
5	A second-order PDE is characterized by (a) the presence of only first derivatives (b) the presence of second derivatives (c) the absence of derivatives (d) the presence of third derivatives	K2	CO3
6	An equation is said to be of order two if it involves one of the differential coefficients $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$. (a) at least (b) at most (c) exactly (d) no	K2	CO3
7	f(x) is an function if $f(-x) = -f(x)$. (a) even (b) odd (c) cosine (d) sine	K1	CO4
8	The coefficients a_n in a Fourier series are associated with function. (a) sine (b) cosine (c) exponential (d) normal	K2	CO4
	The one-dimensional heat equation is given by (a) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	K2	CO5
1111	$\Delta^2 u = 0$ is known as equation. (a) dirichlet (b) laplace (c) normal (d) wave	K1	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry **EOUAL** Marks $(5 \times 7 = 35)$

Question No.	Question Question	K Level	СО
11.a.	Eliminate a and b from $z = axe^y + \left(\frac{1}{2}\right)a^2e^y + b$.		
	(OR)		
11.b.	Eliminate the arbitrary functions f and F from $y = f(x - at) + F(x + at)$.		

Cont...

12.a.	Show that the equations $xp - yq = x$ and $x^2p + q = xz$ are compatible and find their solution.		600
(OR)		K3	CO2
12.b.	Find a complete integral of $zpq = p + q$.		
13.a.	Solve: $ar = xy$.	К3	!
 -	(OR)		CO3
13.b.	Solve: $xr = p$.		
14.a.	A sinusoidal voltage Esin ωt , where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function $u(t) = \begin{cases} 0 & \text{if } -L < t < 0 \\ Esin \omega t & \text{if } 0 < x < L \end{cases} p = 2L = \frac{2\pi}{\omega}, \ L = \frac{\pi}{\omega}.$	К3	CO4
	(OR)		
14.b.	Find the Fourier series of the function $f(x)$ if $f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases} p = 2L = 4, L = 2.$		
15.a.	Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0, assuming that the initial temperature is $f(x) = \begin{cases} x & \text{if} & 0 < x < L/2 \\ L - x & \text{if} & L/2 < x < L \end{cases}$		
	(OR)		
15.b.	Find the temperature $u(x,t)$ in a laterally insulated copper bar 80 cm long if the initial temperature is $100 \sin (\pi x/80)^{\circ}C$ and the ends are kept at $0^{\circ}C$. How long will it take for the maximum temperature in the bar to drop to $50^{\circ}C$? Physical data for copper: density $8.92 \ g/cm^3$, specific heat $0.092 \ cal/(g^{\circ}C)$, thermal conductivity $0.95 \ cal/(cm \ sec^{\circ}C)$.	К3	CO5

SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	СО
16	Form a partial differential equation by eliminating the function ϕ from $\phi(x^2 + y^2 + z^2, z^2 - 2xy) = 0$.	K2	CO1
17	Find a complete integral of $yzp^2 - q = 0$.	K3	CO2
18	Solve: $xys - qy = x^2$.	K3	CO3
19	Find the two half-range expansions of the function $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$	K3	CO4
20	Prove the one-dimensional wave equation.	K3	CO5