PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks (10) 1. Write the differential equation that the rate of change of the volume V of voluming tank is proportional to the square root of the depth of water in the a) $\frac{dv}{dt} = ky$ b) $\frac{dv}{dt} = k\sqrt{y}$ c) $\frac{dv}{dt} = -k\sqrt{y}$ 2. Solve $\frac{dy}{dx} = 2xy$ a) $x = y^2 + c$ b) $y = x + c$ c) $y = 2x + c$ 3. Suppose $y_1, y_2,, y_n$ are n solutions of the homogeneous n^{th} order equal linearly independent then what about wronskian? a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)y' +$	num: 75 Marks
SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks (10) 1. Write the differential equation that the rate of change of the volume V of a drinking tank is proportional to the square root of the depth of water in the a) $\frac{dv}{dt} = ky$ b) $\frac{dv}{dt} = k\sqrt{y}$ c) $\frac{dv}{dt} = -k\sqrt{y}$ 2. Solve $\frac{dy}{dx} = 2xy$ a) $x = y^2 + c$ b) $y = x + c$ c) $y = 2x + c$ 3. Suppose $y_1, y_2,, y_n$ are n solutions of the homogeneous n^{th} order equal linearly independent then what about wronskian? a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)$ a) $y(x) = c_1y_1(x) + c_2y_2(x)$ b) $y(x) = (c_1x + c_2)e^x$	
 ALL questions carry EQUAL marks (16) Write the differential equation that the rate of change of the volume V of v drinking tank is proportional to the square root of the depth of water in the a) dv/dt = ky b) dv/dt = k√y c) dv/dt = -k√y Solve dy/dx = 2xy a) x = y² + c b) y = x + c c) y = 2x + c Suppose y₁, y₂,, y_n are n solutions of the homogeneous nth order equal linearly independent then what about wronskian? a) w = 0 b) w ≠ 0 c) w = ∞ Write the general solution of homogeneous equations y" + p(x)y' + q(x) a) y(x) = c₁y₁(x) + c₂y₂(x) b) y(x) = (c₁x + c₂)e^x 	
 Write the differential equation that the rate of change of the volume V of drinking tank is proportional to the square root of the depth of water in the a) dv/dt = ky b) dv/dt = k√y c) dv/dt = -k√y Solve dy/dx = 2xy a) x = y² + c b) y = x + c c) y = 2x + c Suppose y₁, y₂,, y_n are n solutions of the homogeneous nth order equal linearly independent then what about wronskian? a) w = 0 b) w ≠ 0 c) w = ∞ Write the general solution of homogeneous equations y" + p(x)y' + q(x) a) y(x) = c₁y₁(x) + c₂y₂(x) b) y(x) = (c₁x + c₂)e^x 	
drinking tank is proportional to the square root of the depth of water in the a) $\frac{dv}{dt} = ky$ b) $\frac{dv}{dt} = k\sqrt{y}$ c) $\frac{dv}{dt} = -k\sqrt{y}$ 2. Solve $\frac{dy}{dx} = 2xy$ a) $x = y^2 + c$ b) $y = x + c$ c) $y = 2x + c$ 3. Suppose $y_1, y_2,, y_n$ are n solutions of the homogeneous n^{th} order equal linearly independent then what about wronskian? a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)y' + q(x)y$	$0 \times 1 = 10)$
a) $\frac{dv}{dt} = ky$ b) $\frac{dv}{dt} = k\sqrt{y}$ c) $\frac{dv}{dt} = -k\sqrt{y}$ 2. Solve $\frac{dy}{dx} = 2xy$ a) $x = y^2 + c$ b) $y = x + c$ c) $y = 2x + c$ 3. Suppose $y_1, y_2,, y_n$ are n solutions of the homogeneous n^{th} order equal linearly independent then what about wronskian? a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)y' + q($	e tank?
 a) x = y² + c b) y = x + c c) y = 2x + c 3. Suppose y₁, y₂,, yn are n solutions of the homogeneous nth order equal linearly independent then what about wronskian? a) w = 0 b) w ≠ 0 c) w = ∞ 4. Write the general solution of homogeneous equations y" + p(x)y' + q(x a) y(x) = c₁y₁(x) + c₂y₂(x) b) y(x) = (c₁x + c₂)e² 	$\mathrm{d})\frac{dv}{dt} = \frac{k}{y}$
 a) x = y² + c b) y = x + c c) y = 2x + c 3. Suppose y₁, y₂,, yn are n solutions of the homogeneous nth order equal linearly independent then what about wronskian? a) w = 0 b) w ≠ 0 c) w = ∞ 4. Write the general solution of homogeneous equations y" + p(x)y' + q(x a) y(x) = c₁y₁(x) + c₂y₂(x) b) y(x) = (c₁x + c₂)e² 	•
 3. Suppose y₁, y₂,, y_n are n solutions of the homogeneous nth order equal linearly independent then what about wronskian? a) w = 0 b) w ≠ 0 c) w = ∞ 4. Write the general solution of homogeneous equations y" + p(x)y' + q(x) a) y(x) = c₁y₁(x) + c₂y₂(x) b) y(x) = (c₁x + c₂)e^x 	$d) y = x^2 + c$
linearly independent then what about wronskian? a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)y' + q$	\mathbf{u}
a) $w = 0$ b) $w \neq 0$ c) $w = \infty$ 4. Write the general solution of homogeneous equations $y'' + p(x)y' + q(x)y' + q(x)y$	tion which are
a) $y(x) = c_1 y_1(x) + c_2 y_2(x)$ b) $y(x) = (c_1 x + c_2)e^{-x}$	d) None
c) $y(x) = c_1 \cos x + c_2 \sin x$ d) None	(x)y=0
5. If the characteristic equation $a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0 = 0$ has complex conjugate roots $a \pm ib$ write down the general solutions? a) $e^{ax}(\cos bx - i\sin bx)$ b) $e^{ax}(c_1 \cos bx + c_2 \sin bx)$ c) $(c_1 + c_2)e^{ax} \cos bx + i(c_1 - c_2)e^{ax} \sin bx$ d) None	•
6. Find the general solution of $a_0y^{(n)} + a_1y^{(n-1)} + \cdots + a_0y = f(x)$	• .
a) $y = y_c + y_p$ b) $y = y_c - y_p$	
c) linearly independent d) linearly dependent.	
7 What is I (411)	
7. What is $L(t^n)$ $a) \frac{n}{s^n}$ $b) \frac{s^{n+1}}{n!}$ $c) \frac{n!}{s^{n+1}}$	d) $\frac{1}{s^n}$
8. Find $L^{-1}\left(\frac{1}{s^3}\right) = ?$	
a) $\frac{t^2}{3}$ b) $\frac{t^3}{3}$ c) $\frac{t^4}{4}$	d) <i>t</i>
a) $\frac{1}{2}$ b) $\frac{1}{3}$. 5, -
9. The convolution of two functions $(f * g)$ is defined by τ	
a) $(f * g)(t) = \int_0^\infty f(t) g(t) dt$ b) $(f * g)(t) = \int_0^t f(t)$	$g(t-\tau)d\tau$
a) $(f * g)(t) = \int_0^\infty f(t) g(t) dt$ b) $(f * g)(t) = \int_0^t f(t)$ c) $(f * g)(t) = \int_0^t f(t - \tau) g(t) d\tau$ b) $(f * g)(t) = \int_0^t f(t) d\tau$ d) $(f * g)(t) = \int_0^t f(t) d\tau$	$-\tau)g(t-\tau)d\tau$
10. What is $L^{-1}[-t f(t)]$ a) $F'(s)$ b) $F(s)$ c) $F''(s)$	

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

11. a) Solve the Initial value problem $\frac{dy}{dx} = 2x + 3$, y(1) = 2.

- b) Solve the Initial value problem $x^2 \frac{dy}{dx} + xy = \sin x$, $y(1) = y_0$.
- 12. a) State and prove principle of superposition for homogeneous equations?

- b) Show that the functions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$ and $y_3(x) = \sin 2x$ are linearly independent?
- 13. a) Show that the first three solutions $y_1(x) = x$, $y_2(x) = x \ln x$ and $y_3(x) = x^2$ of the third order equation $x^3y^{(3)} - x^2y'' + 2xy' - 2y = 0$ are linearly independent, To find the particular solution of given equation.

- (OR) b) Find the particular solution of $3y'' + y' 2y = 2\cos x$.
- 14. a) Find $L[\cosh kt]$.

- (OR) b) Solve the Initial value problem $x'' + 4x = \sin 3t$; x(0) = x'(0) = 0.
- 15. a) Find $L^{-1}\left[\tan^{-1}\left(\frac{1}{\epsilon}\right)\right]$

(OR)

b) Find $L^{-1}\left\{\frac{2s}{(s^2-1)^2}\right\}$

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

- 16. Find the general solution of $(x^2 + 1) \frac{dy}{dx} + 3xy = 6x$.
- 17. To solve the Initial value problem, y'' + 2y' + y = 0; y(0) = 5, y'(0) = -3.
- 18. Find a particular solution of the equation, $y'' + y = \tan x$.
- 19. Solve the Initial value problem $y'' + 4y' + 4y = t^2$; y(0) = y'(0) = 0.
- 20. Find L[f(t)] if $f(t) = \begin{cases} \cos 2t & \text{if } 0 \le t < 2\pi \\ 0 & \text{if } t \ge 2\pi \end{cases}$

Z-Z-Z

END