PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

MAJOR ELECTIVE COURSE- I: NUMBER THEORY

Time: Three Hours	Maximum: 50 Marks
	•

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

1.	If the successors of two elements $a, b \in N$ Are equal then			
	(i)	a < b	(ii)	a > b
	(iii)	a = b	(iv)	$a \neq b$

- 2. Positive integers greater than 1 which are not prime numbers are called
 - (i) Composite numbers

(ii)Integers

(iii) Natural numbers

- (iv) Twin primes
- 3. Taking (m-1) in the place of m the form 6m+5 is equivalent of the form

 $(i) \qquad 6m+1$

(ii) 6m-1

(iii) 6m

- (iv) $6m^2 + 2$
- 4 If p is a prime and d/(p-1) then the number of least residues mod p with order d is

(i) $\Phi(d)$

(ii) $\Phi(p-1)$

(iii) $\Phi(p)$

- $(iv) \Phi(a)$
- 5. If the positive integers x, y, z satisfy the equation $x^3 + y^3 = z^3$ then at least one of the x, y, z is divisible by
 - (i) 2

(ii) 3

(iii) 4

(iv) 5

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

a. Prove by Mathematical induction that $3^{2n+1} + 2^{n+1} = M(7)$?

OR

- b. State and prove Trichotomy law on natural numbers?
- 7 a. If n is a positive integer then prove that $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ is not an integer?

OR

- b. Prove that $f_{n+1}^2 f_n f_{n+2} = (-1)^n$ where f_n is the n^{th} Fibonacci number?
- 8 a. If n > 1 and $a^n 1$ is prime then prove that a = 2 and n is a prime?

OR

b. Prove that the relation congruence modulo m is an equivalence in the set of integers?

9 a. If n is prime then prove that nC_r is divisible by ?

OR

- b. If and b
 - b are relatively prime to 91 prove that

 $a^{12}-b^{12}$

- is divisible by 91?
- 10 a. In a primitive solution of $x^2 + y^2 = z^2$ then prove that x and y are of different parity?

OR

b. If p is a prime of the form 4k + 3 and p/n then prove that n has no proper representation?

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

a. Prove that any two integers a and b have a unique greatest common divisor?

OR

- b. (i). Prove that $(a^m)^n = a^{mn}$; $a, m, n \in N$?
 - (ii). Prove that' > 'is an order relation in N?
- 12 a. State and prove unique factorization theorem?

b. Verify that
$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$
?

a. Prove that the Fermat numbers are Co-primes?

OR

- b. If (a, m)/b then show that $ax \equiv b \pmod{m}$ has exactly (a, m) solutions?
- a. State and prove Fermat's theorem?

ΩR

- b. State and prove Wilson's theorem?
- 15 a. Prove that the equations $x^4 + y^4 = z^4$ has no solution in positive integers?

OR

b. Prove that every prime p of the form 4k+1 is representable as a sum of two squares?

Z-Z-Z END