PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

MAJOR ELECTIVE COURSE- I: ASTRONOMY

Time:	Three Hours Maximum: 50 Marks
	SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks (5 x 1 = 5)
1	The period of one complete rotation of the earth about its axis or the period of one apparent rotation of the celestial sphere about the celestial axis is called a
2	The terrestrial sphere is divided into a number of regions called the zones of earth by small circle parallel to the equator. These circles are called circles. (i) longitude (ii) latitude (iii) centric (iv)arctic
3	Which of the following is the relation between horizontal parallax and angular radius of a body? (i) $\frac{P}{\theta} = \frac{a}{r}$ (ii) $\frac{P}{\theta} = \frac{r}{a}$ (iii) $\frac{P}{\theta} = \frac{1}{r}$ (iv) $\frac{1}{\theta} = \frac{a}{r}$
4	 θ r θ r The direction in which a body is seen from the centre of the sun is called its (i) heliocentric longtitude (ii) geocentric direction (iii) heliocentric direction (iv) mean anomaly
5	What is the epact of the year 1952? (i) 2 (ii) 3 (iii) 5 (iv) 4
	SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)
6 a	If α is sun's altitude in the prime vertical at a place of latitude φ and \square is its longitude, prove that $\sin \varphi = \sin \square \sin \omega \cos ec \alpha$ OR
· b	Prove that at any instant the sidereal time is given by the right ascension plus west hour angle of any celestial body expressed in time units at that instant.
7 a	Find analytically the conditions for perpetual day and night. OR
·b	Find an expression for Dip.
8 a	The altitude of a star is observed and found to be the angle whose sine is 5/13 Calculate the true position of the star, assuming the amount of refraction at ar altitude of 45° to be 58"2. OR

Determine the horizontal parallax of moon by meridian observations.

Cont...

9 a Derive Kepler's third law from Newton's law of gravitation.

OR

- b Derive Kepler's equation.
- At the place on the Tropic of cancer, the moon's phase at the time of sun set on 21st March was 1/4. show that the altitude of the moon was then 60° assuming the moon to move on the ecliptic.

OR

b Find the minimum number of eclipses in a year.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Trace the changes in the co-ordinates of the sun in the course of a year.

OR

- b i) At a place in north latitude φ two stars A and B (declinations δ and δ_1 respectively) rise at the same moment and A transits when B is setting, prove that $\tan \varphi \tan \delta = 1 2 \tan^2 \varphi \tan^2 \delta_1$.
 - ii) In a place of latitude 45° shows that the interval between a star's rising and the instant when it is due west is constant.
- 12 a If the declination of the sun changes from δ ° to δ ° + s" between sunrise and sunset, show that the afternoon will be longer than the forenoon by $\frac{\sec \delta \sin \varphi}{\sqrt{\cos^2 \varphi \sin^2 \delta}} \frac{s}{15}$ seconds, φ being the latitude of the place.

OR

- b Find the duration of twilight.
- 13 a i) State the laws of refraction
 - ii) If r" be the horizontal refraction, show that the point on the horizon where the sun rises is shifted by r" $\sin \varphi \sqrt{\sec(\varphi \delta) + \sec(\varphi + \delta)}$ where δ is the declination of the sun and φ , the latitude of the place.

OR

- b Discuss the changes in R.A. and declination of a body due to geocentric parallax.
- 14 a Obtain the Newton's deductions from Kepler's laws.

OR

- b If t_1 , t_2 are the hourly variations in the equation of time when the sun is at perigee and apogee, show that the eccentricity of earth's orbit is nearly $\frac{t_1-t_2}{t_1+t_2}\tan^2(\omega/2)$, assuming that the equinoctial line to be perpendicular to the apse line of earth's orbit.
- 15 a Discuss various kinds of lunar liberations.

OR

b Determine the maximum and minimum number of eclipses possible near a node of the lunar orbit.