PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ABSTRACT ALGEBRA

Time: Three Hours	Maximum: 50 Marks
Time: Timee Hours	Maximum: 50 Marks

SECTION-A (5 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

1 If $a,b \in \mathbb{Z}$, a/b and b/a, then

(i) a = nb

(ii) b = ma

(iii) $a \neq b$

(iv) $a = \pm b$

2 If φ is a homomorphism of G into \overline{G} , then $\varphi(x^{-1})$

(i) $[\varphi(x)]^{-1}$

(ii) $\varphi(x)$

(iii) $\phi(e)$

(iv) 1

3 the order of disjoint cycles (123)(16543)

(i) 2

(ii) 4

(iii) 3

(iv) 6

4 If R is a commutative ring with unit element, then R is a

(i) field

(ii) Euclidean domain

(iii) integral domain

(iv) none of these

5 If R is an integral domain then R[x] is

(i) integral domain

(ii) field

(iii) ring

(iv) Euclidean domain

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6 a If a is a relatively prime to b but a / b c, then prove that a/c.

OR

b If a and b are integer, not both 0, then prove that (i) (a,b) exists, (ii) (a, b) =

 $m_0a + n_0b$ for some $m_0, n_0 \in \mathbb{Z}$

7 a Prove that any subgroup of a cyclic group is itself a cyclic group.

OR

b If G is a finite group and N is a normal subgroup of G, then o(G/N) = o(G)/o(N).

8 a If G is a group, then A(G), the set of automorphism of G, is also a group.

OR

b Prove that any group of order p^2 is Abelian.

9 a If ϕ is a homomorphism of R into R, then prove that (i) $\phi(0) = 0$ (ii) $\phi(-a) = -\phi(a)$ for every a ϵ R.

OR

- b If U is an ideal of the ring R then prove that R/U is a ring.
- 10 a If R be a Euclidean ring , Suppose that a ,b ,c ϵ R, a/b c but (a, b) = 1 then prove that a / c .

OR

b If R is a commutative ring with unit element whose only ideals are {0} and R itself, then prove that R is a field.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Let $\sigma: S \to T$ and $\tau: T \to U$. Prove that $\sigma_0 \tau$ is 1-1 if each of σ and τ is 1-1.

OR

- b Let $G = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $ad bc \neq 0$ a, b, c, $a \in R \}$ Prove that G forms a group under matrix multiplication.
- 12 a Prove that HK is a subgroup of G if and only if HK = KH.

OR

- b State and prove Cauchy's theorem for Abelian groups.
- 13 a State and prove Cayley's theorem.

OR

- b Prove that every permutation is a product of is cycle.
- 14 a Prove that a finite integral domain is a field.

OR

- b Prove that any homomorphism of a field is either an isomorphism or it takes each element into 'O'.
- 15 a If R is a commutative ring with unit element and M is a ideal, then prove that R/M is a field if and only if M is a maximal ideal.

OR

b Prove that every integral domain can be imbedded in a field.

Z-Z-Z

END