Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Sixth Semester)

Branch - MATHEMATICS

GRAPH THEORY

Time:	Three Hours	Maximum: 50 Marks
	Answer A	-A (5 Marks) LL questions arry EQUAL marks (5 x 1 = 5)
1	A linear graph $G = (V, E)$ consists of a set of objects $V = \{v_1, v_2,\}$ called	
	(i) vertices (iii) graphs	(ii) edges (iv) lines
2		degree of a mode in the tree. (ii) Second minimum (iv) Second maximum
3	A graph that cannot be drawn on a edges is called (i) coplanar (iii) complete	a plane without a crossover between its (ii) nonplanar (iv) isomorphic
4	called a	y two elements 0 and 1, such matrix is (ii) triangular matrix (iv) unit matrix
5	A diagraph that has non self-loop (i) simple digraphs (iii) symmetric diagraphs	(ii) Asymmetric diagraphs
	Answer A	• B (15 Marks) LL Questions Carry EQUAL Marks (5 x 3 = 15)
6 a	Prove that the number of vertic	es of odd degree in a graph is always even.
b	·	ed or disconnected) has exactly two vertices oath joining these two vertices.
7 a	Show that, there is one and only one path between every pair of vertices in a tree T.	
b	OR If in a graph G there is one and o	only one path between every pair of vertices,
·	then prove that G is a tree.	
8 a Prove that, any simple planar graph can be embedded every edge is drawn as a straight line segment. OR		
h	Show that, every tree with two	or more vertices is 2-chromatic.

9 a Prove, If B is a circuit matrix of a connected graph G with e edges and n vertices, rank of B = e - n + 1.

OR

是一种原则 人名英格兰人

WAS STATED

- b Prove that, the reduced incidence matrix of a tree is nonsingular.
- 10 a Prove that, The (i, j)th entry in X^r equals the number of different, directed edge sequences of r edges from the ith vertex to the jth.

Let A_f be the reduced incidence matrix of a connected digraph, then prove that the number of spanning trees in the graph equals the value of $\det(A_f, A_f^T)$.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Explain - Briefly - Konisberg Bridge Problem.

 Ω R

- b Prove that a simple graph (i.e., a graph without parallel edges or self-loops) with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- 12 a Prove that, every connected graph has atleast one spanning tree.

OR

- b Prove that, A graph G with n vertices, n-1 edges, and no circuits is connected
- 13 a Prove that a connected planar graph with n vertices and e edges has e n + 2 regions.

OR

- b Prove that the vertices of every planar graph can be properly colored with five colors.
- 14 a Prove that two graphs G_1 and G_2 are isomorphic if and only if their incidence matrices $A(G_1)$ and $A(G_2)$ differ only by permutations of rows and coloumns.

 OR
 - b Let B and A be respectively the circuit matrix and the incidence matrix (of a self loop free graph) whose coloumns are arranged using the same order of edges. Then prove that every row of B is orthogonal to very row A, that is $A \cdot B^T = B \cdot A^T = 0 \pmod{2}$, where superscript T denotes the transposed matrix.
- 15 a Prove that the determinant of every square submatrix of A, the incidence matrix of a digraph is 1, -1 or 0.

OR

b Prove that A simple digraph G of n vertices and n-1 directed edges is an arborescence rooted at v_1 if and only if the (1,1) cofactor of K(G) is equal to 1.

END

45