PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - MATHEMATICS

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

	· _		ALL questions carry EQUAL marks $(10 \times 1 = 10)$))	
	Modul No.	le Question	Question	K Level	СО
	1	1	Newton's Law of cooling is given by a) $\frac{dT}{dt} = k(T-A)$ b) $\frac{dT}{dt} = -k(T-A)$ c) $\frac{dt}{dT} = -k(T-A)$ d) $\frac{dt}{dT} = k(T-A)$	K1	CO1
		2	A first-order differential equation of the form is called Bernoulli equation. (a) $\frac{dy}{dx} + P(x)y = Q(x)y^n$ (b) $\frac{dy}{dx} - P(x)y = Q(x)y^n$ (c) $\frac{dy}{dx} + P(x)y^n = Q(x)y$ (d) $\frac{dy}{dx} - P(x)y^n = Q(x)y$	K1	CO1
		3	The Wronskian of (cos x, sin x) is a) cos x b) sin x c) 1 d) 0	K1	CO2
	2	4	The particular solution of y" - 4y = $2e^{3x}$ is a) $\frac{2}{3}e^{3x}$ b) $\frac{2}{5}e^{3x}$ c) $\frac{3}{5}e^{3x}$ d) e^{3x}	K2	CO2
	3	5	A degenerate system may have either no solution or infinitely many solutions. (a) dependent (b) unit (c) independent (d) zero	K2	CO3
		6	A linear first-order system is if the functions are all identically zero. (a) non homogeneous (b) homogeneous (c) independent (d) dependent	K1	СОЗ
	4	7	$L(t^{-\frac{1}{2}}) = \underline{\qquad}$ a) $\sqrt{\frac{\pi}{s^2}}$ b) $\frac{\pi}{s}$ c) $\sqrt{\frac{\pi}{s^2}}$ d) $\sqrt{\frac{\pi}{s}}$	К2	CO4
		8	$L[u_a(t)] = if a>0$ (a) e^{as} (b) $\frac{e^{as}}{s}$ (c) e^{-as} (d) $\frac{e^{-as}}{s}$	K2	CO4
	5	9	The basic circuit equation is a) $L \frac{dI}{dt} + RI + \frac{1}{C}Q = E(t)$ b) $L \frac{dI}{dt} - RI + \frac{1}{C}Q = E(t)$ c) $L \frac{dI}{dt} - RI - \frac{1}{C}Q = E(t)$ d) $L \frac{dI}{dt} + RI + \frac{1}{C}Q + E(t) = 0$	K1 (CO5
	21		The convolution process associated with the Laplace Transform in time domain results into a) Simple multiplication in complex frequency domain b) Simple division in complex frequency domain c) Simple multiplication in complex time domain d) Simple division in complex time domain	K2 (COS

14

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

ALL questions carry EQUAL Marks (5 × 7 = 35) Module Question K								
Question No.	Question	K Level	СО					
11.a.	Solve the initial value problem $\frac{dy}{dx} = y^2$, $y(1) = 2$							
(OR)		K2	COI					
11.b.	Solve the differential equation $\frac{dy}{dx} = (x+y+3)^2$]						
12.a.	Evaluate the initial value problem $y''+2y' + y = 0$ given $y(0) = 5$, $y'(0) = -3$	К3	CO2					
	(OR)							
12.b.	Find the general solution of $9y^{(5)} - 6y^{(4)} + y^{(3)} = 0$							
13.a.	Solve the initial value problem $x' = -y$, $y' = (1.01)x - (0.2)y$ with given $x(0) = 0$, $y(0) = 1$							
(OR)		K2	CO3					
13.b.	Derive a general solution of the system $(D^2 + 3)x - y = 0$, $-2x + (D^2 + 2)y = 0$							
14.a.	Evaluate L[cos (at) sinh (at)]							
(OR)		KЗ	CO4					
14.b.	Evaluate the inverse Laplace transform of $\frac{s^2+1}{s^3-2s^2-8s}$	7.7	004					
15.a.	Obtain L ⁻¹ $\left[\frac{2s}{(s^2-1)^2}\right]$							
	(OR)	K2	CO5					
15.b.	Consider a mass on a spring with $m = k = 1$ and $x(0) = x'(0) = 0$. At each of the instants $t = 0, \pi, 2\pi, 3\pi,, n\pi$, the mass is struck a hammer blow with a unit impulse. Determine the resulting motion							
	No. 11.a. 11.b. 12.a. 13.b. 14.a. 14.b. 15.a.	Question No.Question11.a.Solve the initial value problem $\frac{dy}{dx} = y^2$, $y(1) = 2$ (OR)11.b.Solve the differential equation $\frac{dy}{dx} = (x+y+3)^2$ 12.a.Evaluate the initial value problem $y''+2y'+y=0$ given $y(0)=5$, $y'(0)=-3$ (OR)12.b.Find the general solution of $9y^{(5)} - 6y^{(4)} + y^{(3)} = 0$ 13.a.Solve the initial value problem $x' = -y$, $y' = (1.01)x - (0.2)y$ with given $x(0) = 0$, $y(0) = 1$ (OR)(OR)13.b.Derive a general solution of the system $(D^2 + 3)x - y = 0$, $-2x + (D^2 + 2)y = 0$ 14.a.Evaluate L[cos (at) sinh (at)](OR)14.b.Evaluate the inverse Laplace transform of $\frac{s^2 + 1}{s^3 - 2s^2 - 8s}$ 15.a.Obtain $L^{-1}\left[\frac{2s}{(s^2 - 1)^2}\right]$ (OR)Consider a mass on a spring with $m = k = 1$ and $x(0) = x'(0) = 0$. At	QuestionQuestionK Level11.a.Solve the initial value problem $\frac{dy}{dx} = y^2$, $y(1) = 2$ K2(OR)(OR)K211.b.Solve the differential equation $\frac{dy}{dx} = (x + y + 3)^2$ K212.a.Evaluate the initial value problem $y'' + 2y' + y = 0$ given $y(0) = 5$, $y'(0) = -3$ K312.b.Find the general solution of $9y^{(5)} - 6y^{(4)} + y^{(3)} = 0$ K313.a.Solve the initial value problem $x' = -y$, $y' = (1.01)x - (0.2)y$ with given $x(0) = 0$, $y(0) = 1$ K2(OR)(OR)K213.b.Derive a general solution of the system $(D^2 + 3)x - y = 0$, $-2x + (D^2 + 2)y = 0$ K314.a.Evaluate L[cos (at) sinh (at)](OR)(OR)(OR)K315.a.Obtain $L^{-1} \left[\frac{2s}{(s^2 - 1)^2} \right]$ (OR)K2(Consider a mass on a spring with $m = k = 1$ and $x(0) = x'(0) = 0$. At each of the instants $t = 0$, π , 2π , 3π ,, $n\pi$, the mass is struck a					

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of water. Brine containing 2 lb/gal of salt flows into the tank at the rate of 4 gal/min, and the well-stirred mixture flows out of the tank at the rate of 3 gal/min. How much salt does the tank contain when it is full?	K4	CO1
2	17	Find the general solution of $y'' - 4y = 2 e^{2x}$	К3	CO2
3	18	Solve the two-dimensional system $x' = -2y$ and $y' = \frac{1}{2}x$	K3	CO3
4	19	Using Laplace Transform, solve the initial value problem $x' + 4x = \sin 3t$, $x(0) = x'(0) = 0$	K4	CO4
5	20	Consider a mass-spring-dashpot system with $m = 1$, $c = 4$, and $k = 20$ in appropriate units. Suppose that the system is initially at rest at equilibrium $(x(0) = x'(0) = 0)$ and that the mass is acted on beginning at time $t = 0$ by an external force $f(t)$ - the square wave with amplitude 20 and period 2π . Find the position function $f(t)$.	K4	CO5