PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Sixth Semester)

Branch - MATHEMATICS

COMPLEX ANALYSIS

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

 $(5 \times 1 = 5)$ ALL questions carry EQUAL marks

1	If $f(z) = z ^2$ then
	(a) f is not differentiable
	c: 1:cc-mentichle et a +0

Har Maker

- (b) f is differentiable only at z=0
- (c) f is differentiable at $z \neq 0$ (d) f is differentiable at every point
- (a) inverse point
 - (d) singular point (c) cross ratio
- The value of $\frac{1}{2\pi i} \int_C \frac{z^2 + 5 dz}{(z 3)}$ where C is the circle |z| = 4(d) 0(b) 13 (c) 14 (a) 12
- The Laurent's series expansion of $f(z) = z^2 e^{\frac{1}{z}}$ about z=0.

(a)
$$z^2 + z + \frac{1}{2} + \frac{1}{3!z} + \dots$$
 (b) $z^2 - z + \frac{1}{2z} + \frac{1}{3!z} + \dots$

(c)
$$z^2 + z + \frac{1}{3} + \frac{1}{3!z} + \dots$$
 (d) $z^2 + z + \frac{1}{2z} + \frac{1}{3!z^2} + \dots$

5 If
$$f(z) = \frac{e^z}{z^2}$$
 then Res $\{f(z); 0\}$ is

(a) 0 (b) ∞ (c) z (d) 1

SECTION - B (15 Marks)

Answer ALL Questions

 $(5 \times 3 = 15)$ ALL Questions Carry EQUAL Marks

6 a If f(z) and $\overline{f(z)}$ are analytic in a region D show that f(z) is constant in the region.

- b Prove that the real and imaginary parts of an analytic function are harmonic functions.
- 7 a Show that the transformation $w = \frac{5-4z}{4z-2}$ maps the unit circle |z| = 1 into a circle of radius unity and centre $\frac{-1}{2}$.

b Prove that any bilinear transformation preserves cross ratio.

8 a State and prove Cauchy's integral formula.

OR

- b State and prove fundamental theorem of algebra.
- 9 a Expand cosz into Taylor's series about the point $z = \frac{\pi}{2}$.

OR

- b Expand $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in Laurent's series if 2 < |z| < 3.
- 10 a State and prove Cauchy's Residue theorem.

OR

b Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13+5\sin\theta}.$

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Derive Cauchy's -Riemann equation in polar form.

OF

- b Determine the analytic function f(z) = u + iv if $u + v = \frac{\sin 2x}{\cosh 2y \cos 2x}$
- 12 a (i) Find the image of the strip 2 < x < 3 under $w = \frac{1}{z}$
 - (ii) Find the bilinear transformation which maps the points $z_1 = 0$, $z_2 = -i$, and $z_3 = -1$ into $w_1 = i$, $w_2 = 1$, and $w_3 = 0$ respectively.

OR

- b Determine the bilinear transformation which maps 0,1, into i,-1,-i respectively. Under this transformation show that the interior of the unit circle of the z-plane maps onto the half plane left to the v axis (left half of the w-plane).
- 13 a State and prove maximum modulus theorem.

OR

- b State and prove Cauchy's theorem.
- 14 a Find the Laurent's series expansion of $\frac{-1}{(z-1)(z-2)}$ about

(i)
$$|z|=1$$
 (ii) $1<|z|<2$ (iii) $|z|>2$

OR

- b State and prove Laurent's theorem.
- 15 a Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx$ (a > b > 0)

OR

b State and prove Rouche's theorem.