PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - MATHEMATICS

CALCULUS - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	со
1	1	$\lim_{n \to \infty} \left(\frac{n}{n+1} \right) = \dots$ a) 1 b)0 c) ½ d)\infty	K1	CO1
	2	Every bounded, monotonic sequence is a)Completeness b)convergent. c)divergent d)Oscillating	K2	CO1
2	3	A series $\sum a_n$ is calledif the series of absolute values $\sum a_n $ is convergent. a) absolutely convergent b) conditionally convergent. c) divergent d) oscillating	K1	CO2
	4	If a series $\sum a_n$ is absolutely convergent, then it isa) convergent b) conditionally convergent. c) divergent d) oscillating	К2	CO2
3	5	$\lim_{n\to\infty} \frac{x^n}{n!}$ a) i b)0 c) ½ d)\infty	K1	CO3
	6	Radius of convergence of $Cosx =$ a) 1 b)0 c) ½ d) ∞	K2	CO3
4	7	If F is conservative, then $curlF =$ a) 1 b)0 c) ½ d) ∞	K1	CO4
	8	$\int_{a}^{b} F'(x)dx = F(b) - F(a) \text{ is known as}$ a) Fundamental Theorem b) conservative vector c) independent of path d)oscillating	K2	CO4
5	9	$\iint_S F' ds = \iiint_V div F dv \text{ is known as}$ a) Fundamental Theorem b) Divergence Theorem c) Green's Theorem d) Stokes Theorem	K1	CO5
	10	$\oint_{c} (L dx + M dy) = \iint_{D} \left(\frac{\partial M}{\partial x} - \frac{\partial n}{\partial y}\right) dx dy \text{ is known as}$ a) Green's theorem b) Stoke's theorem c) divergence theorem d) Fundamental theorem	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	If $\sum a_n$ and $\sum b_n$ are convergent series, then so are the series $\sum (a_n + b_n)$ then prove that $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$	K5	CO1
	(OR)			ļ
	11.b.	Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.		
2	12.a.	State and prove root test.	ļ	
	(OR)			CO2
	12.b.	Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ absolutely convergent.		
3	13.a.	Find the Maclaurin series for sinx and prove that it represents sinx for all x.	K2	CO3
	(OR)			1
	13.b.	Find the approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at $x = 8$.		
4	14.a.	Find the work done by the force field $F(x,y) = x^3i - xyk$ in moving a particle along the quarter-circle $r(t) = costi + sintj$, $0 \le t \le \frac{\pi}{2}$	- K3	CO4
	(OR)			
	14.b.	Show that the vector field, $F = xz\overline{\iota} + xyz\overline{\jmath} - y^2\overline{k}$ is not conservative.		
5	15.a.	Find the surface area of a sphere of radius.		
	(OR)		K1	CO5
	15.b.	Find the flux of the vector field $F(x,y,z) = z \bar{\imath} + y \bar{\jmath} + x \bar{k}$ across the unit circle sphere $x^2 + y^2 + z^2 = 1$.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module	Question	Question	K Level	со
<u>No.</u> 1	No. 16	State and prove Comparison test.	K2	CO1
	17	State and prove ratio test.	K2	CO2
3	18	Derive Taylors series.	K4	CO3
4	19	Evaluate $\int_C x^4 dx + xy dy$ is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$ from $(1,0)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$	K5	CO4
5	20	Evaluate $\int_C F \cdot dr$ where $F(x, y, z) = -y^2i + xj + z^2k$ and is the curve of intersection of the plane $y + z = 2$ and the cylinder $x^2 + z^2 = 1$	K5	CO5