PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(First Semester)

Branch - MATHEMATICS

CALCULUS - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module	Question	ADD questions carry = Q	_ K	СО
No.	No.	Question	Level	
1	1	If $\vec{r}(t) = \langle t^3, ln(3-t), \sqrt{t} \rangle$ then the domain of \vec{r} is a) (0,3) b) [0.3] c) (0,3] d) [0,3)	K1	CO1
	2	The length of the arc of the circular helix $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$ from the point $(1,0,0)$ to the point $(1,0,2\pi)$ is? a) 2π b) $2\sqrt{2\pi}$ c) $\sqrt{2\pi}$ d) $\sqrt[1]{\sqrt{2\pi}}$	K2	CO1
2	3	If $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$ then $f(3,2) = $ a) $\frac{\sqrt{6}}{2}$ b) $\frac{2}{\sqrt{6}}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{2}{\sqrt{3}}$	K 1	CO2
	4	a) $\frac{\sqrt{6}}{2}$ b) $\frac{2}{\sqrt{6}}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{2}{\sqrt{3}}$ The function $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ is discontinuous at the point a) $(0,0)$ b) $(1,0)$ c) $(0,1)$ d) $(1,1)$	K2	CO2
3	5	If $f(x,y) = xe^y$ then $\nabla f(2,0) = $ a) $\langle 2,1 \rangle$ b) $\langle 1,2 \rangle$ c) $\langle 1,1 \rangle$ d) $\langle 2,2 \rangle$	K1	CO3
	6	If (a,b) is a saddle point of the function $f(x,y)$ then a) $D > 0$ b) $D < 0$ c) $D = 0$ d) none	K2	CO3
4	7	$ \int_{1}^{2} \int_{0}^{3} x^{2} y dx dy = \underline{\qquad} $ $ a) \frac{27}{2} \qquad b) -\frac{27}{2} \qquad c) -\frac{27}{4} \qquad d) \frac{27}{4} $	K1	CO4
	4	8	If $R = [0, \frac{\pi}{2}]X[0, \frac{\pi}{2}]$ then $\iint_R \sin x \cos y dA =$ a) 0 b) 1 c) -1 d) 2 The rectangular coordinates of the point with spherical coordinates	K2
5	9	The rectangular coordinates of the point with spherical coordinates $\left(2,\frac{2\pi}{3},1\right)$ is a) $\left(1,\sqrt{3},1\right)$ b) $\left(1,\sqrt{3},-1\right)$ c) $\left(-1,\sqrt{3},-1\right)$ d) $\left(-1,\sqrt{3},1\right)$	KI	CO5
	10	The equation of the surface $z^2 = x^2 + y^2$ in cylindrical coordinates is a) $z = r^2$ b) $z^2 = r$ c) $z = r$ d) $z = \sqrt{r}$	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

		AND decorations and a first section of the section		
Module	Question	o Question	K Level	СО
<u>No.</u>	<u>No.</u>	The state of the security of t		
1	of	For the curve $\vec{r}(t) = \sqrt{t\vec{i}} + (2-t)\vec{j}$, find $\vec{r}'(t)$ and locate the position	K2	CO1
		of the vector $\vec{r}(1)$ and the tangent vector $\vec{r'}(1)$.		
		(OR)		
	11.b.	Show that the curvature of the circle of radius a is $1/a$.		
	11.0.	Short that are out and a xy2		CO2
2	12.a.	Examine whether $\lim_{(x,y)\to(0,0)} f(x,y)$ exists if $f(x,y) = \frac{xy^2}{x^2+y^4}$.		
		(OK)		
	12.b.	The base radius and height of a right circular cone are measured as 10cm and 25cm, respectively, with a possible error in measurement of as much as cm in each. Use differentials to analyze the maximum error in the calculated volume of the cone.	K4	
	<u> </u>	III the calculated volume of the conter	Cont	•

	13.a.	If $z = f(x, y)$ has continuous second order partial derivatives and $x = r^2 + s^2$ and $y = 2rs$, construct $\frac{\partial z}{\partial r}$ and $\frac{\partial^2 z}{\partial r^2}$.		
	(OR)			
3	13.b.	Suppose the temperature at a point (x, y, z) in space is given by $T(x, y, z) = \frac{80}{1+x^2+2y^2+3z^2}$, where T is measured in degree Celsius and	К3	CO3
		x, y, z in meters. Identify the direction in which the temperature increase fastest at the point $(1,1,-2)$? Illustrate the maximum rate of increase?		
	14.a.	Calculate the volume of the tetrahedron bounded by the planes $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$.		
	(OR)		K3	CO4
4	14.b.	Identify the mass and centre of mass of the triangular lamina with vertices $(0,0)$, $(1,0)$, $(2,0)$ if the density function is $\rho(x,y) = 1 + 3x + y$.		
	15.a.	List the coordinates of the centre of mass of a solid of constant density that is bounded by the parabolic cylinder $x = y^2$ and the planes $x = z$; $z = 0$; $x = 1$.	K4	CO5
=		© (OR)		
5	15.b.	Deduce the value of the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx.$		

SECTION -C (30 Marks)

Answer ANY THREE questions

	ALL questions carry EQUAL Marks $(3 \times 10 = 30)$				
Module No.	Question No.	Question	K Level	со	
1	16	Deduce the equations of the normal plane and the osculating plane of the helix $\vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t \vec{k}$ at the point $P(0,1, \pi/2)$,	K4	CO1	
2	17	a) If $z = f(x,y) = x^2 + 3xy - y^2$ find the differential dz . b) If x changes from 2 to 2.05 and y changes from 3 to 2.96 compare the values of Δz and dz .	K4	CO2	
3	18	Examine the maximum value of the function $f(x, y, z) = x + 2y + 3z$ on the curve of intersection of the plane $x - y + z = 1$ and the cylinder $x^2 + y^2 = 1$.	K4	соз	
4	19	The manager of a movie theatre determines that the average time movie-goers wait in line to buy ticket for the week's film is 10 minutes and the average time they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent inspect the probability that a movie-goer waits a total of less than 20 minutes before taking his or her seat.	K4	CO4	
5	20	Simplify $\iiint_E \sqrt{x^2 + z^2} dV$ where E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane $y = 4$.	K4	CO5	