PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(First Semester)

Branch - MATHEMATICS

ANALYTICAL GEOMETRY OF 3D AND TRIGONOMETRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$

Module	Question	Question	K Level	СО
No.	No.	The equation of the y-axis is		
1	1	(a) $y = 0, z = 0$ (b) $x = 0, z = 0$	K1	CO1
	1	(a) $y = 0, z = 0$ (b) $x = 0, z = 0$ (c) $x = 0, y = 0$ (d) none		
	 	If the two lines are coplanar, if the shortest distance		
	2	between them is	77.0	001
		(a) zero (b) not equal to zero	K2	CO1
		(c) less than zero (d) greater than zero		
		When the radius of the radius $u^2 + v^2 + w^2 - d$ is		
5.5		positive, the locus is an	17.1	CO2
2	3	(a) Imaginary sphere (b) point sphere	K 1	002
		(c) real sphere (d) greatest sphere		
. 4	4	Intersection of two spheres is a		
		(a) sphere (b) great circle	K2	CO2
		(c) real sphere (d) circle		
	5	The section of the right circular cone by any plane		
		perpendicular to its axis is a	K 1	CO3
		(a) right circular cone (b) circle	Ki	
		(c) quadric cone (d) reciprocal cone		<u> </u>
3		The equation of the cone passing through the axis is of the		
	6	form	. K2	CO3
		$(a) 2\overline{fyz + 2gzx + 2hxy} = 0$		
		(b) $ax^2 + by^2 + cz^2 = 0$		
		(c) 2fyz + 2gzx + 2hxy = 1	ļ	
:		(d) $ax^2 + by^2 + cz^2 = 1$		
	7	If all planes perpendicular to the axis or a generator of a		
4		cylinder give only circles, the cylinder is called a	K1	CO4
		(a) conicoid (b) enveloping cylinder		1
		(c) right circular cylinder (d) conic		
•	8	The intersection of a line and a quadric is	K2	CO4
İ		(a) right circular cylinder (b) enveloping cylinder	K2	004
		(c) conicoid (d) conic	 	
·		$x_n - \frac{1}{x_n} = \underline{\hspace{1cm}}$	771	COF
5	9	(a) $\cos n\theta$ (b) $\sin n\theta$	K1	CO5
		(c) $2\cos n\theta$ (d) $2i\sin n\theta$		
	10	(c) $2 \cos n\theta$ (d) $2i \sin n\theta$ $\cos h^{-1}x = $		
		$cosh^{-1}x = $ (a) $log_e(x + \sqrt{x^2 + 1})$ (b) $log_e(x + \sqrt{x^2 - 1})$	K2	CO5 .
		(c) $\log_e(x - \sqrt{x^2 - 1})$ (d) $\log_e(x - \sqrt{x^2 + 1})$		
L	J	(0) toge(x 4x 2) (a) toge(x 4x 1)		Cont

SECTION - B (35 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Find the symmetrical form of the equations of the line of intersection of the planes $x + 5y - z - 7 = 0$, $2x - 5y + 3z + 1 = 0$.	K2	CO1
	(OR)			COI
	11.b.	Find the condition that two given straight lines should be coplanar.		
2	12.a.	Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2x - y + 2z - 2 = 0$.		
	(OR)			CO2
	12.b.	Show that the plane $2x - y - 2z = 16$ touches the sphere $x^2 + y^2 + z^2 - 4x + 2y + 2z - 3 = 0$ and find the point of contact.		
3	13.a.	Find the equation of the cone with vertex O and base curve, the conic in which the surface $ax^2 + by^2 + cz^2 = 1$ is cut by the plane $l_1x + m_1y + n_1z = p$.	К3	
	(OR)			CO3
	13.b.	Find the equations of the tangent planes to the cone $9x^2 - 4y^2 + 16z^2 = 0$ which contain the line $\frac{x}{32} = \frac{y}{72} = \frac{z}{27}$.		
4	14.a.	Find the equation of a right circular cylinder of radius 3 with axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$.		
	(OR)			CO4
	14.b.	Find the equations of the tangent planes to $x^2 + y^2 + 4z^2 = 1$ which intersect in the line whose equations are $12x - 3y - 5 = 0$, $z = 1$.		
5	15.a.	Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.	К3	GO.5
	(OR)			CO5
	15.b.	Separate into real and imaginary parts of $tan^{-1}(x + iy)$.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Find the shortest distance between the lines $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$; $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$.	K2	CO1
2	17	A plane passes through a fixed point (a,b,c) and cuts the axes in A,B,C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.	K3	CO2
3	18	Find the condition for the equation $F(x, y, z) \equiv ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0$ to represent a cone.	К3	CO3
4	19	Find the locus of the point of intersection of three mutually perpendicular tangent planes to the central conicoid $ax^2 + by^2 + cz^2 = 1$.	K4	CO4
5	20	Expansion of $sin^n \theta$ when n is a positive integer.	К3	CO5