PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS

REAL ANALYSIS

T	ime: Three Hours Maximum: 50 Marks
	SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks $(5 \times 1 = 5)$
1	Let A be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$, then which of the following is true? (i) $\inf A = \sup(-A)$ (ii) $\inf A = -\sup(-A)$ (iii) $\inf A = \sup(A)$
2	Every infinite subset of a countable set A is (i) Countable (ii) Uncountable (iii) Not denumerable (iv) Not enumerable
3	Which of the following set is connected? (i) $[0,1) \cup (1,2]$ (ii) $[0,1] \cup [2,3]$ (iii) $[0,1] \cup [1,2]$ (iv) $(0,1) \cup (1,2)$
4	When a sequence $\{S_n\}$ of real number is said to be monotonically increasing? (i) $S_n = S_{n+1}$, $(n = 1,2,3)$ (ii) $S_n \leq S_{n+1}$, $(n = 1,2,3)$ (iii) $S_n \geq S_{n+1}$, $(n = 1,2,3)$ (iv) $S_n < S$, $(n = 1,2,3)$
5	If f is continuous at every point of E, then f is said to be on E. (i) bounded (ii) unbounded (iii) connected (iv) continuous
	$\frac{\text{SECTION - B (15 Marks)}}{\text{Answer ALL Questions}}$ $\text{ALL Questions Carry EQUAL Marks} \qquad (5 \times 3 = 15)$
6	 a If a and b are positive real numbers and n is a positive integer, then show that (ab)^{1/n} = a^{1/n}b^{1/n}. OR b Let z and w be complex numbers. Then show that
	(i) $\overline{z+w} = \overline{z} + \overline{w}$, (ii) $\overline{zw} = \overline{z}.\overline{w}$, (iii) $z + \overline{z} = 2Re(z), z - \overline{z} = 2i Im(z)$, (iv) $z\overline{z}$ is real and positive (except when $z = 0$).
7 :	 a Let A be the set of all sequences whose elements are the digits 0 and 1. Then show that A is uncountable. OR b Prove that a set E is open if and only if its complement is closed.
	· ·

a Prove that closed subsets of compact sets are compact.

b State and prove Weierstrass theorem.

Cont...

9 a State and Prove Ratio Test.

OR

- b Show that $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- 10 a Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then show that there exists a point $x \in (a, b)$ such that f(x) = c.

OR

b If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then prove that f(E) is connected.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Assume that S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then prove that $\alpha = \sup L$ exists in S, and $\alpha = \inf B$.

OR

- b If a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are complex numbers, then show that $\left|\sum_{j=1}^n a_j \overline{b_j}\right|^2 \leq \sum_{j=1}^n \left|a_j\right|^2 \sum_{j=1}^n \left|b_j\right|^2$.
- 12 a Let $\{E_n\}$, n=1,2,3 be a sequence of countable sets and put $S=\bigcup_{n=1}^{\infty}E_n$. Then prove that S is countable.

OR

- b If X is a metric space and $E \subset X$, then show that
 - (i) \bar{E} is closed
 - (ii) $E = \overline{E}$ if and only if E is closed.
 - (iii) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.
- 13 a A subset E of real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$ and x < z < y, then show that $z \in E$.

OR

- b If a set E in \mathbb{R}^k has one of the following three properties, then prove that it has the other two:
 - (i) E is closed and bounded
 - (ii) E is compact
 - (iii) Every infinite subset of E has a limit point in E.
- 14 a (i) If \overline{E} is the closure of a set E in a metric space X, then prove that $\operatorname{diam} \overline{E} = \operatorname{diam} E$.
 - (ii) If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1,2,3,...) and if $\lim_{n\to\infty} diam K_n = 0$, then prove that $\bigcap_{n=1}^{\infty} K_n$ consists of exactly one point.

OR

b Prove that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Z-Z-Z

15 a Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.

OR

b Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(X) is compact.

END