slap (

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS

OPERATIONS RESEARCH - I

Cime: Three Hours	Maximum: 50	Mark
ime: intechouis		

		Swer ALL questions	
		tions carry EQUAL marks	$(5 \times 1 = 5)$
1	In the primal problem has n constituted dual problem is	raints and m variable then the num	ber of variables in the
	(i) m (iii) $m + n$	(ii) n (iv) $m-n$	eg tr
2	method is to determine transportation problem is optima (i) Northwest corner	whether the current basic feasible il or not. (ii) Least cost	e solution of the
	(iii) Vogel's approximation	(iv) Modi	**************************************
3	In a integer model, the (i) Pure (iii)Mixed	solution values of the decision var (ii) 0-1 (iv) Pure and Mixed	iables are 0 or 1.
4	If $t_p = 14$, $t_0 = 2$, then the var. (i) 4 (iii) 2	(ii) 1 (iv) 3	e e e
5	When a positive quantity K is di	vided into 5 parts, the maximum v	alue of their product is
	(i) 5K (iii) (5K) ⁵	(ii) (K/5) ⁵ (iv) (K/5) ²	
	- An	TION - B (15 Marks) swer ALL Questions ons Carry EQUAL Marks	$(5 \times 3 = 15)$
6	a Write the algorithm to solve a Li		•
	b Write the dual of the following l	LPP:	A MATTER OF THE STATE OF
	$Maximize Z = x_1 - x_2 + 3x_3$	4-	
	***	$\leq 2; \ 2x_1 - 2x_2 + 3x_3 \leq 6, \ x_1,$	·
7	a Obtain an Initial basic feasible s	olution for the following TP by Le	east Cost method

	Α .	В	C	D	Capacity
X	1	2	3	4	6
Y	4	3	2	0	
Z	0	2	2 .	1 ,,,	10
Demand	4	6	8	6	:

OR

b Explain the Mathematical formulation of the assignment problem.

8 a Consider the following production data:

Product	Profit per unit (Rs.)	Direct labour requirement (hours)
1	6	127 - 43 -
2	8	11
3		14 o 4 m o 4 m o 5 m o 5

Cont...

·福兰等的人 (1937)

Fixed cost (Rs.)	Direct labour requirement
8,000	Up to 10,000 hours
16,000	10,000 to 20,000 hours
22,000	20,000 to 30,000 hours

Formulate an integer programming problem to determine the production schedule so as to maximize the total net profit.

- b Write an algorithm to solve Branch and bound method.
- a Define i) Optimistic time ii) Pessimistic time iii) Most likely time

b Construct a network diagram for the following data:

Activity	A	В	C	D	Е	F	G	H	I	J
Preceding	-	A	A	В	Α	B,E	C	D,F	G	H,I
activities					1		1	1		1 1

10 a Explain the steps for solving Dynamic Programming Problem.

b Use Dynamic programming to solve the following problem: Minimize $Z = y_1^2 + y_2^2 + y_3^2$ Subject to the constraints:

$$y_1 + y_2 + y_3 \ge 15$$
; $y_1, y_2, y_3 \ge 0$.

SECTION - C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Use two - phase simplex method to solve the following LPP

Maximize $Z = 5x_1 - 4x_2 + 3x_3$ Subject to the constraints:

$$2x_1 + x_2 - 6x_3 = 20$$
; $6x_1 + 5x_2 + 10x_3 \le 76$; $8x_1 - 3x_2 + 6x_3 \le 50$, $x_1, x_2, x_3 \ge 0$.

b Write the dual of the following LPP:

Maximize $Z = 3x_1 - 2x_2 + 4x_3$ Subject to the constraints:

$$3x_1 + 5x_2 + 4x_3 \ge 7$$
; $6x_1 + x_2 + 3x_3 \ge 4$; $7x_1 - 2x_2 - x_3 \le 10$,

$$x_1 - 2x_2 + 5x_3 \ge 3$$
; $4x_1 + 7x_2 - 2x_3 \ge 2$; $x_1, x_2, x_3 \ge 0$.

12 a Obtain an Optimum basic feasible solution for the following TP:

Jotani an Optimia	D	E	F	G	Supply
A	42	48	38	37	160
В	40	49	52	51	150
C	39	38	40	43	190
Demand	80	90	110	160	

OR

b Find an Optimum assignment and the maximum sales for the following assignment problem:

JI O O I O I I I I I I				
	A	В	C	D
P	140	112	98	154
0	90	72	63	99
R	110	88	77	121
S	80	64	56	88

13 a Use Branch and bound method to solve the following IPP:

Maximize $Z = 2x_1 + 2x_2$ Subject to the constraints:

$$5x_1 + 3x_2 \le 8$$
; $x_1 + 2x_2 \le 4$; $x_1, x_2 \ge 0$ and are integers.

b Use Branch and bound method to solve the following IPP:

Minimize $Z = 4x_1 + 3x_2$ Subject to the constraints:

$$5x_1 + 3x_2 \ge 30$$
; $x_1 \le 4$; $x_2 \le 6$ $x_1, x_2 \ge 0$ and are integers.

14 a For the data given below:

Activity	1 - 2	1-3	2 - 3	2-4	3 - 4	4-5	
Duration	20	25	10	12	6	10	

Draw the network and calculate the length and variance of the critical path.

OR

b Three time estimates of all activities of a project are given below:

	TIMOO CHILO.	OUTILITATED OF						- /
	Activity	1 - 2	1-3	1 - 4	2 - 5	3 - 5	4-6	5-6
	110tivity	1	1	2	1	2	2	3
	<u> </u>	<u> </u>	<u>+</u>	- 4-				
- 1	t	1	4	2	1	<u> </u>		<u> </u>
	<u></u>	7	7	8	1	14	8	15
	l.n	. ,	,	, ,	·		l <u></u>	

Draw the network and calculate the length and variance of the critical path.

15 a Use Dynamic Programming to show that $Z = p_1 log p_1 + p_2 log p_2 + \dots + p_n log p_n$ Subject to the constraints: $p_1 + p_2 + \dots + p_n = 1$ and $p_j \ge 0$ is maximum, when $p_1 = p_2 = \dots = p_n = 1/n$.

OR

b Use Dynamic Programming to solve the following problem

Minimize $Z==y_1^2+y_2^2+\cdots y_n^2$ Subject to the constraints: $y_1,y_2,y_3...=c$; $y_j\geq 0,\ i=1,2,3...n$.

Z-Z-Z

END

f.

.

.

•

.

,