PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Sixth Semester)

Branch - MATHEMATICS

NUMERICAL METHODS WITH R PROGRAMMING

Time: Three Hours	Maximum: 50 Marks
Answe	ON-A (5 Marks) r ALL questions carry EQUAL marks (5 x 1 = 5)
1. The augmented matrix in Gauss Jorda (i) Row Echelon form (iii) Matrix Echelon form	n method is reduced to (ii) Column Echelon form (iv) Augmented form
2. Trapezoidal formula is also known as(i) Simpson's rule(iii) Prismoidal method	(iv) Average end area method
3. What is the Order of convergence of (i) 2.312 (iii) 1.618	Regula-Falsi method? (ii) 2.231 (iv) 1.321
 4. Which operator is used to assign value (i) ← (iii) ⇒ 	(iv) ≔
5. What is the matrix of second derivation coordinate components called?(i) Jacobian Matrix(iii) Covariance Matrix	ves of a scalar function f with respect to (ii) Hessian Matrix (iv) Correlation Matrix
SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)	
6. a) Solve the system of equations 1 x + 2y + z = 3, $2x + 3y + 3OR$	z = 10, 3x - y + 2z = 15.
b) Apply Gauss-Jordan method to	find the solution of the following system:
10x + y + z = 12; $2x + 10$ y	$y + z = 13; \ x + y + 5z = 7.$
7. a) Evaluate $\int_{-3}^{3} x^4 dx$ by using Tra OR b) Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ by using	
8. a) Compute y at $x = 0.25$ by Mod $y(0) = 1$.	lifted Euler method given $y' = 2xy$,

OR
b) Solve the equation $x^3 + x^2 - 1 = 0$ for the positive root by iteration

method.

9. a) Write a short note on relational operators in R.

OR

- b) Write the coding for Newton-Raphson method.
- 10. a) Describe hessian matrix in R.

OR

b) Discuss integrating discretized functions in R.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11.a) Solve the following system by Gauss-Jordan method:

$$5x_1 + x_2 + x_3 + x_4 = 4$$
; $x_1 + 7x_2 + x_3 + x_4 = 12$; $x_1 + x_2 + 6x_3 + x_4 = -5$; $x_1 + x_2 + x_3 + 4x_4 = -6$. OR

b) Solve by Gauss-seidel method, the following system:

28x + 4y - z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35.

12.a) Find the first two derivatives of $(x)^{1/3}$ at x = 50 and x = 56 given the table below:

$$x$$
: 50 51 52 53 54 55 56 $y = x^{1/3}$: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

OR

b) Find the value of f'(0.5) using Stirling's formula from the following data:

$$x$$
: 0.35 0.40 0.45 0.50 0.55 0.60 0.65 $y = f(x)$: 1.521 1.506 1.488 1.467 1.444 1.418 1.389

13.a) Solve $\frac{dy}{dx} = x + y$, given y(1) = 0, and get y(1.1), y(1.2) by Taylor series method.

OR

- b) Find the positive root of $x^3 x = 1$ correct to four decimal places by bisection method.
- 14.a) Explain basic operators and functions in R.

OR

- b) How to finding the zeros of a polynomial in R. Explain it.
- 15.a) Explain numerical differentiation using the numberiv package in R.

OR

b) Explain basic integration in R.