PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fourth Semester)

Branch - MATHEMATICS

MODERN ALGEBRA

. Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	СО
1	1	Any two right cosets of H in G either are identical have or element in common. (a) One (b) two (c) no (d) three	K1	CO1
	2	The order of group S_3 is (a) 2 (b) 3 (c) 4 (d) 6	K2	COI
2	3	The kernel of a homomorphism $f: G \to G'$ is	K1	CO1
	4	In the quotient group $\frac{G}{N}$, N is (a) any proper subgroup of G (b) a cyclic subgroup of G (c) a normal subgroup of G (d) a proper abelian subgroup of G	K2	CO2
3	5	The number of automorphisms of a cyclic group of order n is (a) φ(n) (b) n (c) n ² (d) 1	K1	CO2
	6	Consider an integer 23 such that 23 >= 3p for a 2p-cycle in a permutation group, then p is	K2	CO2
		A ring R is called a Boolean ring if $\forall a \in R$ (a) $a^2 = e$ (b) $a^2 = a$ (c) $a^2 = 0$ (d) $a^n = e$	K1	CO3
4	8	Which of the following is not a ring? (a) (Z,+,.) (b) (Q,+,.) (c) (R,+,.) (d) (R,.,+)	K2	СОЗ
5	-7 1	The characteristic of $(Q, +, \cdot)$ is (a) 0 (b) ∞ (c) 4 (d) 6	K1	CO4
	10	In the ring (\mathbb{Z}_4 , \oplus , \otimes), ({0,2}, \oplus , \otimes) is (a) not a subring (b) a subring with identity (c) subring without identity (d) a subfield	K2	CO4

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	If G is a finite group whose order is a prime number p, then show that G is a cyclic group.		
	(OR)			CO1
	11.b.	Show that there is a one-to-one correspondence between any two right cosets of H in G.		ļ.
	12.a.	Analyze the statement HK is a subgroup of G if and only if $HK = KH$.	:	
2		(OR)		CO1
	12.b.	Analyze the statement N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.		,
	13.a.	Examine the statement every permutation is the product of its cycles.		. <u>-</u>
3	(OR)		K3	CO2
	13.b.	Let G be a group and ϕ an automorphism of G. If $a \in G$ is of order $o(a) > 0$, then examine that $o(\phi(a)) = o(a)$.		: -
	14.a.	If U is an ideal of the ring R, then prove that R/U is a ring and is a homomorphic image of R.		
4	(OR)		K5	CO3
	14.b.	Prove that a finite integral domain is a field.	_	•-
	15.a.	Let R be a Euclidean ring and $a, b \in R$. If $b \neq 0$ is not a unit in R, then prove that $d(a) < d(ab)$.		
5	(OR)			CO4
	15.b.	Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then Prove that R is a field.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3\times10=30)$

Module No.	Question No.	Question	K Level	СО
1	16	 If G is a group, then show that the following statements: i) The identity element of G is unique. ii) Every a ∈ G has a unique inverse in G. iii) For every a ∈ G, (a⁻¹)⁻¹ = a. iv) For all a, b ∈ G, (a.b)⁻¹ = b⁻¹. a⁻¹. 	K2	CO1
2	17	State and prove Sylow's theorem for Abelian Groups.	K2	CO2
3	18	State and prove Cayley theorem.	K2	CO2
4	19	If ϕ is a homomorphism of R into R' with kernel $I(\phi)$, then prove that the following: i) $I(\phi)$ is a subgroup of R under addition. ii) If $a \in I(\phi)$ and $r \in R$ then both ar and ra are in $I(\phi)$.	К3	CO3
5	20	Analyze the statement Every integral domain can be imbedded in a field.	K4	CO4