PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Fifth Semester)

Branch - MATHEMATICS

LINEAR ALGEBRA

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

1. An example of a skew-symmetric matrix is

(a)
$$\begin{pmatrix} 1 & -2 & -2 \\ 2 & 1 & -3 \\ 2 & 3 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \end{pmatrix}$

Let $f: C \to C$ be defined by $f(z) = \overline{z}$. Then ker f is _____ (a) Φ (b) $\{0\}$ (c) $\{1\}$ (d) $\{i\}$ 2.

The standard inner product defined on $V_3(R)$ where $x = (x_1, x_2, x_3)$ and 3.

$$y = (y_1, y_2, y_3) \text{ is } \underline{\hspace{2cm}}$$
(a) $\langle x, y \rangle = (x_1 + y_1)^2 + (x_2 + y_2)^2 + (x_3 + y_3)^2$
(b) $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$
(c) $\langle x, y \rangle = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$
(d) $\langle x, y \rangle = (x_1^2 + y_1^2) + (x_2^2 + y_2^2) + (x_3^2 + y_3^2)$

The rank of the matrix $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ is _____ 4.

(a) 1

· 5. If the eigen values of a square matrix A are 1, 2, 3 then eigen values of A^2 are

(a) 1, 4, 9 (b) 2, 4, 6 (c)
$$-1$$
, -4 , -9 (d) $1, \frac{1}{2}, \frac{1}{3}$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks
$$(5 \times 3 = 15)$$

6 Prove that the product of the two symmetric matrices is symmetric iff the matrices commute.

b. Find
$$\begin{pmatrix} 1 & 2 & \sqrt{2} \\ \sqrt{3} & 4 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 1 & 2 \\ -\sqrt{3} & \sqrt[3]{5} & 7 \end{pmatrix}$$
.

If V is the internal direct sum of $U_1, U_2, \dots U_n$ then Show that V is isomorphic 7 to the external direct sum of $U_1, U_2, \dots U_n$.

on either they are linearly independent or some
$$v_k$$
, is

(d)4

If $v_1, v_2, \dots v_n$ are in V then either they are linearly independent or some v_k , is a linear combination of the preceding ones, $v_1, v_2, \dots v_{k-1}$.

Analyze the $dim_F V = m$ then $dim_F Hom(V, V) = m^2$. 8

b. If V is a finite-dimensional inner product space and W is a subspace of V then Examine that $(W^T)^T = W$.

9 a. Compute the rank of the matrix
$$\begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ 3 & 1 & 1 & -1 & 2 \\ 4 & 0 & 1 & 0 & 3 \\ 9 & -1 & 2 & 3 & 7 \end{pmatrix}$$
OR

b. Determine the characteristic roots of the matrix
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$$

- 10 a. Apply the abstract concept of vector space if $T \in A(V)$ and if $dim_F V = n$, then Prove that T can have at most n distinct characteristics in F.
 - b. Compute the inverse of $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a. Compute the inverse of
$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
OR

- b. Prove that the matrix $U = \frac{1}{5} \begin{pmatrix} -1 + 2i & -4 2i \\ 2 4i & -2 i \end{pmatrix}$ is unitary.
- 12 a. If V is finite-dimensional and if W is a subspace of V, then Prove that W is finite-dimensional, dim $W \le \dim V$ and $\dim v/W = \dim V \dim W$.

OR

- b. Prove that $F^{(n)}$ is isomorphic $F^{(m)}$ if and only if n=m.
- 13 a. If $u, v \in V$ then show that $|(u, v)| \le ||u|| ||v||$.

b. Analyze the statement If V is finite-dimensional and $v \neq 0 \in V$, then there is an element $f \in \hat{V}$ such that $f(v) \neq 0$.

14 a. Verify the Cayley-Hamilton theorem for the matrix = $\begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$.

OR

- b. Determine the characteristic vectors and the characteristic subspace corresponding to any one of the characteristic roots of the following matrix $\begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$.
- 15 a. Apply the abstract concept of vector space, if V is a finite dimensional over F, then $T \in A(V)$ is regular iff T maps V onto V.
 - b. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).