PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Common to Branches – INFORMATION TECHNOLOGY & COMPUTER TECHNOLOGY <u>DATA STRUCTURES</u>

Time: Three Hours

| 10 X (1 X) | 第1

1 11 7

60.

200

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

		ALL questions carry EQUAL marks (10 × 1 =	10)
Module No.	Question No.	Question	K Level	СО
1	1	is a sequential representation of similar data types. a) Queue b) Array c) Stack d) List	K 1	CO1
	2	Matrices with a relatively high proportion of zero entries are called matrices. a) sparse b) Null c) Zero d) worse	K2	CO1
2	3	which sorting algorithm is stable and adaptive/ a) Bubble b) Merge c) Selection Sort d) Insertion Sort	K1	CO2
	4	Quick sort running time depends on the selection of a) size of array b) pivot element c) sequence of value d) depend on data	K2	CO2
	5	The for a linked list is a pointer variable that locates the beginning of the list. a) anchor b) base c) footer d) header	K1	CO3
3	6	The process of allocation memory at the time of execution is called a) Static memory allocation b) Dynamic memory allocation c) Sequence memory allocation d) Parallel memory allocation	K2	CO3
	7	A stack also called a system a) LIFO b) LILO c) LOLI d) LOFI	K1	CO4
4		The queue which wraps around upon reaching the end of the array is called as a) circular queue. b) linked queue. c) doubly linked list. d) representation of queue.	K2	CO4
5	9	A binary tree whose every node has either zero or two children is called a) complete binary tree b) binary search tree c) extended binary tree d) binary tree	K1	CO5
3	10	A graph is called if there is no single node whose removal causes the graph to break into two or more pieces. a) pre-connected b) re-connected c) disconnected d) connected	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Identify traversing linear arrays.		CO1
		(OR)	K3	
	11.b.	Construct the sparse matrices.		
2	12.a.	Develop the insertion sort with example.		CO2
		(OR)	K3	
	12.b.	Identify the hashing with example.		
3	13.a.	Illustrate the dynamic memory allocation.		CO3
		(OR)	K2	
	13.b.	Summarize insertion and deletion in linked list.		
4	14.a.	Elaborate the linked stack		CO4
		(OR)	K6	
	14.b.	Predict the Dequeue in detail.		
5	15.a.	Discuss about Binary Search Trees.		CO5
	<u>-</u>	(OR)	K6	
	15.b.	Adapt the AVL search trees.		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Construct the String operations with example.	К3	CO1
2	17	Identify the Quick sort with suitable example.	К3	CO2
3	18	Explain briefly about the doubly linked list .	K2	СОЗ
4	19	Elaborate about the circular queue.	K6	CO4
5	20	Predict the shortest path problem with example.	K6	CO5