PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING - II

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	Question	K Level	СО
No.	No.	A compound proposition which does not contain any connective	-	
1	1	is called propostion. a) primary b) prime c) composite d) atomic	K1	CO1
	2	If a compound statement is false for all true value assignments for its component statements, then it is called a a) contradiction b) exclusive c) tautology d) argument	K2	CO1
2	3	If $A = \{1,2,3,4\}$ then the relation $R_1 = \{(1,1),(2,4),(3,3),(4,1),(4,4)\} \text{ on A is } ___$ a) symmetric b) transitive c) reflexive d) not reflexive	K1	CO2
	4	A binary relation R is said to be a relation, if (a,b) in R implies that (b,a) is also in R. a) Symmetric b) autosymmetric c) reflexive d) transitive	K2	CO2
3	5	Let $f: A \rightarrow B$ be a function then the set B is called a) domain b) co-domain c) function d) relation	K1	CO3
	6	Which of the following function $f: R \to R$ is neither one-one nor onto function? a) $f(x) = 5x^3 - 1$ b) $f(x) = x^2$ c) $f(x) = -\sin x$ d) $f(x) = \frac{1}{x}$	K2	CO3
4	7	The of a vertex ν in a directed graph is the number of edges ending it. a) in degree b) degree c) incidence d) out degree	K1	CO4
	8	A graph is called a graph if there are no edges. a) regular b) digraph c) weighted d) null	K2	CO4
5	9	The adjacency matrix A is a) symmetric b) transitive c) reflexive d) antisymmetric	K1	CO5
	10	A complete graph K_n is planar if and only if the number of vertices, a) $n < 8$ b) $n < 7$ c) $n < 5$ d) $n < 6$	K2	CO5

is.

22CMU208N/22CTU208N

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Make truth tables for i) $(p \downarrow q) \land (p \downarrow r)$ ii) $p \uparrow q \uparrow r$	W2	dol
	11.b.	(OR) Prove that conditional operation distributes over conjunction.	K2	CO1
	12.a.	Describe the properties of relations with an example.		
2	(OR)			COS
_	12.b.	Define composition of relations and briefly explain with an example.	K2	CO2
	13.a.	If R is a set of real numbers, then show that the function,	K2	CO3
3		$f: R \to R$ defined by $f(x) = 5x^3 - 1$ is one-one onto function.		
		(OR)	KZ	
	13.b.	Show that the composition of function obeys associative law.		
	14.a.	Prove that a simple graph G with n vertices and k components	K2	GO4
4		cannot have more than $\frac{1}{2}(n-k)(n-k+1)$ edges.		
"	(OR)			CO4
	14.b.	 i) Draw the complete graphs K₅ and K₆. ii) Find the number of edges in the graph K₁₂ and K₁₅. 		
5		Determine the number of loops and multiple edges in a multigraph G from its adjacency matrix. $A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 3 \\ 2 & 1 & 0 & 1 \\ 0 & 3 & 1 & 0 \end{bmatrix}$	K2	CO5
-		aw the graph G and check your answer.		
· 	15.b.	(OR) Show that the graph K ₅ is non-planar.		J

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Show that the following statements are contingency: i) $p \Rightarrow (p \Rightarrow q)$ ii) $\sim (p \lor q) \land (\sim p \lor \sim q)$ iii) $(p \Rightarrow (q \land r)) \Rightarrow \sim (p \Rightarrow q)$	K4	CO1
2	17	Let R be an equivalence relation on a non-empty set A . Let a and b be arbitrary elements in A . Then Prove that i) $b \in [a] \Leftrightarrow [b] = [a]$ ii) $[a] = [b]$ if and only if $(a,b) \in R$. iii) equivalence classes determined by a and b are either disjoint or identical.	К3	CO2
3	18	If $f: A \to B$ and $g: B \to C$ are two one-one onto functions, the prove that i) is got one-one onto ii) $g \circ f$ is invertible iii) the product of any function with identity function is function itself.	К3	CO3
4	19	Define Isomorphic graph and explain with an example of isomorphic and non-isomorphic graph.	К3	CO4
5	20	In a complete graph G with n (an odd number) ≥ 3 vertices, there are $(n-1)/2$ edge-disjoint Hamiltonian circuits.	K4	CO5