PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Third Semester)

Common to Branches - COMPUTER SCIENCE/ COMPUTER TECHNOLOGY

STATISTICS & OPERATIONS RESEARCH

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	`	K	<u> </u>
No.	No.	Question	Level	CO
1	1	Out of all Measures of dispersion, the easiest one to calculate is: (a) Standard deviation (b) range (c) variance (d) quartile deviation	K1	CO1
	2	Sum of squares of the deviations is minimum when deviations are taken from: (a) Mean (b) median (c) Mode (d) zero	K2	CO1
2	3	The term regression was introduced by (a) R.A. Fisher (b) Sir Francis Galton (c) Karl Pearson (d) None of the above	K1	CO2
	4	Regression coefficient is independent of: (a) origin (b) scale (c) both origin and scale (d) neither origin nor scale	K2	CO2
3	5	Large sample theory is applicable when (a) n>30 (b) n<30 (c) n<100 (d) n<1000	K1	CO3
	6	Student's 't' distribution was pioneered by (a) Karl Pearson (b) Laplace (c) R.A. Fisher (d) William S. Gosset	K2	CO3
4	7	In the case of one-way classification the total variation can be split into (a) Two components (b) Three Components (c) Four Components (d) Only one Components	K1	CO4
	8	In the case of one-way classification with N observations and t treatments, the error degrees of freedom is (a) N-1 (b) t-1 (c) N-t (d) Nt	K2	CO4
. 5	9	The initial solution of a T.P. obtained by (a) North-West corner rule would invariably be optimum. (b) Least cost method does not provide the least cost solution to a T.P. (c) VAM would invariably be very near to optimum solution. (d) MODI method is infeasible.	K1	CO5
	10	The Penalty in VAM represents difference between the first (a) Two largest costs (b) Largest and Smallest costs (c) Smallest two costs (d) None of these	K2	CO5

23CMU314N/23CTU314N Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question							K Level	со	
	11.a.	Calculate the Arithmetic Mean from the following data									
•		Age in Years		8	, , , , , , , , , , , , , , , , , , , 		12	15	18		
1		Number of work	kers	5	7		12	6	10	K3	CO1
	(OR)							1			
	11.b.	Describe Limitation of statistics									
1	-1	Calculate the Rank correlation coefficient for the following data						lowing data			
	12.a.	x 92 89 87		86	77	71	63	53 50]		CO2
2		y 86 83 9:	77	68	85	52	82	37 57	1	K4	
	(OR)										
	12.b.	Difference between correlation and regression									
	13.a.	State the properties of t-distribution							K4	CO3	
'3		(OR)									
	13.b.	Explain the test procedure of paired – t-test									
	14.a.	Explain the structure for two-way classification						K.5	CO4		
4		(OR)									
	14.b.	Explain the test procedure for sign test									
,	Find the initial basic feasible solution by the VAM										
	15.a.		P	Q	R	S		PPLY		K4	CO3
		A	6	3	5	4	22				
5		В	5	9	2	7	15				
		С	5	7	8	6	8				
	7 12 17 9 45										
	(OR)										
	15.b.	Enumerate the steps involved in solving a transportation problem using North West corner Rule									

SECTION -C (30 Marks)

Answer ANY THREE questions

		ALL ques	tions ca	arry EQU	AL Mar	ks	(3 ×	10 = 30	
Module No.	Question No.	Question						K Level	СО
. 1	16		5-105	ian for the 105-115 23	e followi 115-125 36		135-145 52	K4	CO1
2	17	The following tal maintenance cot X 1 Y 15 Estimate the mai the regression eq	Y (in h 3 18 ntenancuations	undred ru 5 2 ce cost for	r a 4 year	7 23 r old car a	9 22 fter finding	K5	CO2
3	18	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows: 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if the average packing can be taken to be 50 kg							CO3
. 4	19	The following tal under three varie A 20 B 18 C 25 Test using analysidifference in the	ole give ties of s 2 20 20 20 21	es the yielseed. 1 0 8 ariance w	ds of 15 23 17 22 hether th	16 15 28	20 25 32	K4	CO4
5	20	Draw a network Find all the float Activity Time Predecessors	and det			path of the path o	G 5	K5	CO5