PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - COMPUTER SCIENCE WITH DATA ANALYTICS

STATISTICAL DATA ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	Question	K Level	со
No.	No. 1	A sector diagram is also called (a) Bar diagram (b) Pie diagram (c) Histogram (d) frequency polygon	K2	CO1
1	2	Which one of the methods is not a primary data collection method? (a) Questionnaire method (b) Data collected from published sources (c) Local correspondent method (d) Indirect investigation	K1	CO1
2	3	is the statistical tool that studies the degree of all the relationships between variables. (a) mean (b) range (c) correlation (d) mean deviation	K1	CO2
2	4	In the regression equation $Y = 21 - 3X$, the slope is (a) 21 (b) -21 (c) 3 (d) -3	K2	CO2
3 6	In binomial distribution, if n is a number of trials and p is the probability of success, then the value of the mean is (a) -np (b) npq (c) n(1-p) (d) np	K1	соз	
	6	Normal Distribution is symmetric is about (a) Variance (b) Mean (c) Standard deviation (d) Covariance	K2	соз
	7	In testingthe difference between two proportions, test is used. (a) Z-test (b) t-test (c) Fisher test (d) F-test	K1	CO4
4	8	The level of significance is generally denoted by (a) β (b) δ (c) γ (d) α	K2	CO4
5	9	In a chi-square goodness-of-fit test, theoretical frequencies are also called frequencies. (a) actual (b) expected (c) empirical (d) observed	K 1	CO5
	10	The Kruskal-Walli's test is used for (a) comparing two independent groups (b) comparing two related groups (c) comparing more than two independent groups (d) testing the association between two variables.	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question									K Level	СО
1	11.a.	Describe qualitative and quantitative data.										
	(OR)									_	1	
	441	Find mean deviation about median and its coefficient for the following data:								K2	COI	
	11.b.	C-I	0-10	10-20	20-30	30-40	40-50	50-60	60-70			
		Frequency	7	12	18	25	16	14	8	. <u> </u>	<u> </u>	
2		Calculate the correlation coefficient between the height of father (X) and son (Y) from the data given below:							К3	CO2		
		X in inches Y in inches	64 66	65 66 67 65		68 69 70 68	70 72		<u>.,</u>		<u> </u>	

Cont...

	,						
	(OR)						
2	12.b.	Find the rank correlation coefficient for the percentage of marks secured by a group of 8 students in Economics and Statistics: Marks in Economics 50 60 65 70 75 40 70 80 Marks in Statistics 80 71 60 75 90 82 70 50	K3	CO2			
3	13.a.	If a random variable X follows Poisson distribution such that $P(X = 1) = P(X = 2)$. Find (i) mean of the distribution (ii) $P(X = 0)$. ($e^{-2} = 0.13354$)	K2	CO3			
		(OR)] 1.2	CO3			
	13.b. State the properties of Normal distribution.						
4	14.a.	A machine is designed to produce insulting washers or electrical devices of average thickness of .025 cm. A random sample of 10 washers was found to have an average thickness of 0.024 cm. with a S.D. of .002 cm. Test the significance of the deviation. Value of 't' for 9 degrees of freedom at 5 percent level is 2.262.	K4	CO4			
d of average to found to have a found to have a found to have a freedom at 5 freedo		(OR)	CO4				
	A sample of 1000 students from Bombay university was taken and their average weight was found to be 112 lbs. with a standard deviation of 20 lbs. Could the mean weight of the students in the population be 120 pounds?						
	15.a.	In an infantile paralysis epidemic 500 persons contracted the disease 300 received no serum treatments and of these 75 became paralyzed. Of those who did receive serum treatment 65 became paralyzed. Was the serum treatment effective.					
	12.b. by a group of 8 students in Economics and Statistics: Marks in Economics 50 60 65 70 75 40 70 80 Marks in Statistics 80 71 60 75 90 82 70 50 13.a. If a random variable X follows Poisson distribution such that P(X = 2). Find (i) mean of the distribution (ii)P(X = 0). (e (OR) 13.b. State the properties of Normal distribution. A machine is designed to produce insulting washers or electrical of average thickness of .025 cm. A random sample of 10 washers found to have an average thickness of 0.024 cm. with a S.D. of the significance of the deviation. Value of 't' for 9 degrees freedom at 5 percent level is 2.262. (OR)						
5	15.b.	Two types of plastic, each produced by different process, were tested for strength. The measurement are presented in the following table. Do the data present the evidence of difference between locations of distribution of strength of two plastics? Use Mann Whitney-U test with $\alpha = 0.01$. Plastic type-I 15.5 18.7 22.3 17.6 19.1 14.8 Plastic type-II 21.2 22.4 18.3 19.3 17.1 27.7	K3	CO5			

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3\times10=30)$

3 // 1 1	0 4	 	1 45	(
Module No.	Question No.	Question	K Level	CO
1	16	Scores obtained by two teams are given below: Team A 15 10 7 5 3 2 Team B 20 10 5 4 2 1 Calculate coefficient of variation and state which team is more consistent.	K4	CO1
2	17	Calculate two regression lines and find the age of husband, when wife's age is 30. Further calculate the age of wife when husband's age is 25. Age of Husband's 22 23 23 24 26 27 27 28 30 30 Age of Wife's 18 20 21 20 21 22 23 24 25 26	K4	CO2
3	18	The atoms of radioactive element are randomly disintegrating. If every gram of this element, on average emits 3.9 alpha articles per second, what is the probability that during the next second the number of alpha particles emitted from 1 gram is (i) atmost 6 (ii) atleast 2 (iii) atleast 3 and atmost $6 \cdot (e^{-3.9} = 0.020)$.	K4	CO3
4	19	An I.Q. test was administered to 5 persons before and after they were trained. The results are given below: Candidates I II III IV V Before Training 110 120 123 132 125 After Training 120 118 125 136 121 Test whether there is any change in I.Q. after the trainingprogram. $(t_{0.01}(4) = 4.6)$	K4	CO4
5	20	The following table gives the yields of 15 samples of plot under three varieties of seed: A B C 20 18 25 21 20 28 23 17 22 16 15 28 20 25 32 Test using analysis of variance whether there is significant difference in the average yield of seed.	K4	CO5